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1 Introduction

Traditionally, computer vision problems have been classified into three levels: low
(image to image), middle (image to features), and high (features to analysis) [11].
Some typical low-level vision problems include optical flow [7], stereo [10] and
intrinsic image decomposition [1]. The solution to these problems would then be
combined to solve higher level problems, such as action recognition and visual
question answering. For example, optical flow has been used as an input to
structure from motion, action recognition, and visual effects.

Two recent developments in optical flow affect this general paradigm for
solving computer vision.

First, highly accurate optical flow can finally be learned [3,8,14,19]. In most
high-level computer vision problems the state-of-the-art methods have been
based on deep learning for a few years. However, in optical flow it is only within
the last year that the top performing methods [8,19] are end-to-end trainable
networks. This opens a new research question of how should we integrate these
learnable optical flow modules into large systems to solve the computer vision
problem.

Second, top performing methods are now very accurate in optical flow bench-
marks. For example in KITTI, the state-of-the-art method achieves 92% accu-
racy, and in Sintel the average end-point-error is below 5 pixels, in images that
are 1024 pixels wide (or 0.4%). This leads to a series of questions about the
evaluation of flow. For example, are current methods accurate enough for higher
level applications? In other words, is optical flow solved? If not, how should we
design new benchmarks in the future to ensure they are most useful for higher
level applications?

The goal of this workshop is to revisit the original plans of when and how to
use optical flow for computer vision applications in light of these recent develop-
ments. We invite members of both researchers and practitioners of optical flow,
to learn about recent progress, and to address these questions under the general
topic of “What is optical flow for?”.
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2 Survey and Speaker Results

To collect input on the leading question, “What is optical flow for?”, we followed
a two-stage approach. First, we solicited feedback from the community through
a survey, sent out to researchers in the field of optical flow and general video
analysis in advance to the workshop. Second, we invited 9 speakers, selected
for their long experience in research on optical flow as well as applications, to
answer the same question in short talks during the workshop. This section briefly
summarizes the result of both.

2.1 Survey

In this section, we present the questions and the outcome of our survey on
optical flow. In the survey, we grouped our questions in three main categories:
the participant background, the current status and the future of optical flow.
We follow the same organization here, by first explaining our goal in each sub-
section and then sharing our findings. While preparing the survey, our goal was
to maximize the amount of information we collect while minimizing the amount
of time the participant spends on answering the questions. With this purpose
in mind, for almost all questions, we provided a set of options by asking the
participant to select all that apply and also including the option “other” for the
participant to write down their own answer if none of the options fit.

Participant Background. In the first part of the questionnaire, we asked
participants about their background and their relation to optical flow. Our goal
was to find out how informed the participants are about optical flow. The main
questions included their current position, their rating of their knowledge on
optical flow, and what computer vision problems they have worked on. We also
asked more specific questions related to optical flow algorithms they use and
optical flow benchmarks they check.

In total, 45 people took the survey, more than half of the participants
are graduate students (63.6%) followed by postdoctoral research assistants or
researchers (20.5%), professors (9.1%), and researchers in industry. More than
half of the participants (55.6%) said that they have used and implemented opti-
cal flow, the remaining participants said that they have used optical flow (33.3%)
or they at least know optical flow (11.1%). In summary, we can conclude that
all of our participants had a research background and they were knowledgeable
about optical flow.

We identified a set of computer vision tasks related to optical flow and shaped
our questions around them throughout the survey. The experiences of our par-
ticipants were roughly equally distributed over these tasks: action localization
or recognition (37.8%), object tracking (31.1%), video object detection (22.2%),
next-frame prediction (26.7%), video semantic segmentation (22.2%), and other
video related tasks (35.6%).
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Current Status of Optical Flow. The goal of our questions in this part is
two-fold. First, we wanted to find out what participants think about the use-
fulness of optical flow for other computer vision tasks. We asked at which level
these tasks benefit from optical flow and if participants know any examples of
specific optical flow algorithms being used for any of these tasks. Our second
goal was to find out about the problems related to optical flow, in particular
in evaluation. We asked which property of an optical flow algorithm they con-
sider more important, speed or efficiency or both. Lastly, we included questions
related to their experiences with optical flow algorithms, what kind of strategies
they follow to choose the optical flow algorithm they use and then the most
common problems they encounter while using an optical flow algorithm.

In terms of usefulness of optical flow algorithms for the computer vision tasks
we identified, most of our participants think that these tasks either definitely
benefit from optical flow or it could potentially benefit. An interesting finding is
the relative ordering of these tasks in benefiting from optical flow. Next-frame
prediction sticks out as the task which benefit the most from optical flow followed
by action recognition or localization, object tracking, video semantic segmenta-
tion, and video object detection. As expected, most of the participants (79.1%)
said that both speed and accuracy are important for optical flow. This finding is
supported by the outcome of another related question: how to choose the optical
flow algorithm to use. The most effective factors were identified as the state-of-
the-art on optical flow benchmarks (78.6%) and speed or being able to run on a
GPU (76.2%). Following the importance of accuracy and speed for optical flow,
66.7% of the participants stated that they need a more accurate flow algorithm
and 61.9% a faster flow algorithm. The more specific problems have been iden-
tified as errors at large displacements (52.4%), bad results in occluded regions
(42.9%), not enough structure in the flow field (33.3%), problems in motion
boundaries (28.6%), and artifacts, spurious objects in the flow field (26.2%). A
considerable amount of participants (23.8%) have identified optical flow as their
main bottleneck.

The Future of Optical Flow. In the last part, we asked our participants
to speculate about the future of optical flow, starting with whether we need
perfectly accurate optical flow. Next, we asked what we need to include in evalu-
ation of optical flow that we currently do not consider, possibly more concerned
about other tasks and the 3D world. Lastly, we asked what would eventually
solve optical flow: better models, different learning strategies, or more data. We
finished the survey by asking the participants to describe how they would use a
perfect optical flow algorithm.

Almost half of the participants (48.8%) think that we need perfectly accu-
rate optical flow only for certain applications such as computational photography
or medical imaging. Only 17.1% of the participants think that current metrics
are enough while the majority agrees that we need better means of evaluating
optical flow. For this purpose, we suggested a set of options including perfor-
mance on specific regions in the image (61%), robustness against noise (53.7%),
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performance at different levels of motion blur (41.5%), performance as input to
another task (36.6%), different types of camera motion (36.6%), performance on
mostly motion oriented tasks (26.8%), the 3D structure of the world (26.8%),
and performance with respect to adverse conditions (26.8%). The last question
was about choosing more likely directions that could eventually solve optical
flow. The highest percentage belongs to unsupervised or self-supervised learning
with 62.8%, followed by better models and better representations for optical flow
with 48.8% for each.

To summarize, our participants come from research background with experi-
ence in computer vision problems related to optical flow. Most of the participants
agree that video-related computer vision tasks benefit or could potentially ben-
efit from optical flow. The accuracy and the speed are identified as the two
most important factors in choosing which optical flow algorithm to use as well
as regarding the problems when using optical flow algorithms. Following that,
recent deep learning methods e.g. FlowNet variants which are both fast and fairly
accurate are frequently employed for various tasks, despite being new. Most of
the participants think that we need better, more specific ways of evaluating
optical flow.

2.2 Speakers

Both Michael Black and Jitendra Malik pointed out that our leading question,
“What is optical flow for?”, has been addressed in the past [2,12]. In biology,
research on motion perception and its purpose goes back at least as far as
Gibson [5]; a list of what optical flow might be useful for in a biological sys-
tem was given by Nakayama [12]. He identified 7 areas:

— Reasoning about the 3D structure of the environment

— Computing time to collision

— Image segmentation

— Computing ego-motion

— Computing saliency; control attention and eye movements
— Increasing contrast sensitivity

— Detect the motion of objects

As Jitendra Malik pointed out, this list, despite being over 30 years old, still
applies today. Beyond this broad list, the speakers identified three large areas
with close connection to optical flow: reasoning about the three-dimensional
world, action understanding, and visualization and visual effects.

The Persistency of the Three-Dimensional World. As pointed out by
Michael Black, an important distinction needs to be made between optical flow
and the motion field. The first describes the motion of visual signals on the image
plane, while the second models the motion of the three-dimensional scene relative
to the observer, as projected into the two-dimensional image plane. With this
distinction, a highlight moving across the surface of a static object would have
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induced non-zero optical flow, although the motion field is zero. In practice, how-
ever, both terms are often used interchangeably, and optical flow often refers to
the motion field. The motion field establishes persistence in the world and models
which parts of the scene correspond across time. Thus, it can be used to extract
multiple views of the same object, or to reason about foreground/background
assignment at object boundaries.

Thomas Brox echoed this use of the motion field to obtain a 3D representation
of the scene and presented a learned approach to 3D reconstruction, DeMoN [20].
An important input to DeMoN is the optical flow itself, which is computed
before feeding it to the main reconstruction pipeline; this two-stage approach is
advantageous since it allows separate pre-training of the optical flow computation
network, which in itself is non-trivial. Another use for optical flow is as an
auxiliary learning task [25]. In this setting, predicting optical flow in addition to
the actual target task (in this case, a camera pose update) provides additional
gradients to the network and hence makes the training more effective.

Going beyond the reconstruction of a static three-dimensional environment,
Lourdes Agapito described how flow can help to distinguish moving objects
from a static scene and reconstruct both. In this application, three-dimensional,
deformable shapes are modelled using a low-dimensional set of deformation
bases; the deformation and camera pose can then be fitted to the optical flow
field, yielding a reconstruction of the full, non-rigid scene, and thus pointing
towards a full semantic understanding of the scene using optical flow as input.

Action Understanding. One of the classical applications of optical flow is to
classify and understand actions of people in videos. Actions and activities are
inherently temporal processes, and the underlying assumption is that optical
flow can be used to compute a motion signature specific to a particular action.

Cordelia Schmidt pointed out that using optical flow as an additional input
indeed helps. Interestingly, however, the accuracy of the flow itself (in terms
of EPE) does not have a large impact on the accuracy of the classification.
It is therefore questionable whether heavy computation should be invested in
computing even better optical flow in order to improve the results of action
recognition. Consequently, she presented recent work on action recognition [17]
that does not require pre-computation of optical flow, but uses only a stream of
frames as input. This sentiment was echoed by Laura Sevilla-Lara, who presented
results that show that, while optical flow helps action recognition, randomly
shuffling a sequence of frames containing an action does not, in fact, degrade
performance to chance. This indicates that long-term motion signatures might
not be as important as assumed. Instead, she suggested that what is important
about optical flow in the context of action recognition is localization as object
boundaries, as well as overall motion of the human body [15].

Kristen Grauman pointed to a different benefit of using optical flow in action
recognition, in that it can serve as a coarse measure of saliency. Flow can there-
fore direct attention of an algorithm towards even fine details in the frame,
which would otherwise get lost in the image. This mechanism works even when
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predicting optical flow from a single image; while just hallucinated, this flow can
nevertheless improve action recognition by steering a network towards important
image regions [4].

Overall, Jitendra Malik estimated action classification to lag about 10 years
behind object detection, judging from the classification rates alone [6], and iden-
tified as the two main problems the long tail distribution of actions as well as
current algorithms’ inability to process long-range motion.

Visualization. Going back to the distinction between the motion field (the
projected motion of the 3D environment) and optical flow (the motion of the 2D
visual stimulus on the image plane), Michael Black pointed out that the later
is important for artistic and visual applications. As an example, if optical flow
is used for temporal resampling in order adjust frame rates between different
playback and recording devices, it is important to take the motion of the image
into account: The motion of a highlight on a static sphere should be properly
interpolated, too. Similarly, applying optical flow to warp and deform images
opens up interesting creative possibilities in the temporal domain, such as cre-
ating the flowing color-like effect in the movie What dreams may come [23], or
to synthesize and transfer facial deformation in The Matriz Reloaded [21].

However, as pointed out by Richard Szeliski, for many such applications in
artistic domains optical flow is currently not good enough, both in terms of
accuracy as well as in terms of representation. For example, since most cur-
rent optical flow methods use only two input frames, temporal consistency of
flow-based visual effects that would satisfy the human visual system is often
hard to achieve, and requires painstaking manual labor. Another example is
the treatment of non-lambertian surfaces containing effects such as highlights,
reflections, or subsurface scattering. All these effects are not well modelled using
current optical flow energy terms, and algorithms therefore fail in the presence
of such surface properties. Lastly, it is critical to be able to model more than one
motion at each location, both for transparent motions such as reflections as well
as for partially occupied pixels at motion boundaries. Especially the appearance
at object boundaries is critical for sufficient visual quality for professional appli-
cations; Richard Szeliski hence called for novel optical flow benchmarks including
these challenging scenarios.

Bill Freeman described a system that deals with the particular case of trans-
parent motion, which uses a two-layer model of the scene to allow the user to
take photos through obstacles such as fences [24]. Furthermore, he pointed out
that tiny motions contain a lot of information about the physical properties of
the world, such as oscillations of large structures and subtle change in appear-
ance due to blood flow in a face. Properly magnified [13,22], these subtle motions
can be made visible, and hence open up new applications in structural analysis
and healthcare. Interestingly, while motion is crucial for this task, it is never
represented directly as optical flow, but instead encoded using hand-crafted [22]
or learned [13] spatio-temporal filters. This squares with the suggestion from
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the survey (see above) to explore different, novel representations of the motion
beyond optical flow.

Other Remarks. Beyond these three main areas, several speakers mentioned
other applications for optical flow. Jitendra Malik hypothesized that, to “solve
vision”, his bet is on unsupervised learning of motion and subsequently using
motion as a supervisory signal for to learn other tasks. Kristen Grauman echoed
this, and showed how motion can be used to improve training a per-pixel object-
ness classifier [9]. She also described 360° video compression as an additional
application for flow; here, the video is stored as if projected onto the six sides
of a cube, and optical flow is useful to determine the orientation of the cube
to ensure best compressibility [16]. Lourdes Agapito talked about her working
experiences with robotics companies and remarked that robotics is a sober exer-
cise because the algorithms have to work in real scenarios. Robustness to real-life
distortion is critical for the deployment of optical flow, yet is currently missing
from the datasets.

Sun talked about an empirical study of CNN for optical flow, which shows
that models matter, so does training [18]. The FlowNetC model, re-trained using
the procedure of PWC-Net, outperforms the published FlowNet2 on Sintel final
pass, although FlowNetC is a sub-network of the much larger FlowNet2 model.
He also discussed about recent changes to the training procedures of PWC-Net,
which brings about 10 to 20% improvement on Sintel and KITTTI.

3 Panel Discussion

One audience asked about Unit-tests for optical flow. The discussion was leaning
toward task-oriented metrics for specific applications. During the panel discus-
sion, Bill Freeman posed an interesting challenge: “take a 15-second video, re-
render it under different lighting conditions/viewpoints.” A successful solution
would require accurate reconstruction of the scene geometry, lighting, mate-
rial properties, and motion. Richard Szeliski commented that, while standard
frame-rate videos have become standard, extremely high-frame rate cameras may
significant benefit specific applications, such as autonomous driving. The high
frame rate would make many vision problems less challenging, such as motion
and tracking.

4 Conclusion

In summary, the workshop was a reminder of wide variety of applications of
optical flow: segmentation, action classification, visualization, medical imaging,
depth estimation, just to name a few - and all of these applications have different
requirements regarding accuracy and fidelity of the representation of motion.
Optical flow is not solved, not only in terms of the error in current bench-
marks but in terms of impact for applications. Some applications like action
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recognition may not benefit directly from better optical flow, but it is not clear
if this is intrinsic to the problem, or a consequence of the choice of categories
or current recognition networks. At the same time, other applications of flow do
benefit from better flow, like visual effects, or non-rigid structure from motion.

Improving these applications may require new benchmarks and evaluation
metrics that are application specific, and that give insight into the impact of
optical flow progress for different applications. In addition to new benchmarks,
it will be interesting to explore better representations of motion, beyond simple
optical flow, that may be more fit to applications.
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