Skip to main content

A Strain Based Model for Adaptive Regulation of Cognitive Assistance Systems—Theoretical Framework and Practical Limitations

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 903))

Abstract

In order to manage increasing complexity so called cognitive assistance systems are integrated into assembly systems. On the basis of real-time measurement and analysis of physiological signals, these assistance systems help to coordinate efficient behavior and to prevent states of long lasting detrimental workload and strain. With measurement technology getting smaller, more powerful and wearable it’s possible to collect and analyze personal physiological data in real-time and detect significant changes at the workplace. It is intended to use these data to control a cognitive assistance systems which as a consequence of a monitored detrimental workload leads to adaptive changes in assembly processes and to a reduction of workload. The underlying principle can be a self-actualizing machine learning algorithm. We want to present a theoretical framework to sketch possibilities of such data-controlled, adaptive systems and to describe some obstacles which have to be overcome before they’re ready for use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schuh, G., Gartzen, T., Wagner, J.: Complexity-oriented ramp-up of assembly systems. CIRP J. Manuf. Sci. Technol. 10, 1–15 (2015)

    Article  Google Scholar 

  2. Samy, S.N., ElMaraghy, H.: A model for measuring products assembly complexity. Int. J. Comput. Integr. Manuf. 23, 1015–1027 (2010)

    Article  Google Scholar 

  3. Hacker, W.: Arbeitsgegenstand Mensch: Psychologie dialogisch-interaktiver Erwerbsarbeit: ein Lehrbuch. Pabst Science Publ, Lengerich (2009)

    Google Scholar 

  4. Wickens, C.D.: Multiple resources and mental workload. Hum. Factors: J. Hum. Factors Ergon. Soc. 50, 449–455 (2008)

    Article  Google Scholar 

  5. Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental workload in ergonomics. Ergonomics 58, 1–17 (2015)

    Article  Google Scholar 

  6. Hoover, A., Singh, A., Fishel-Brown, S., Muth, E.: Real-time detection of workload changes using heart rate variability. Biomed. Sign. Process. Control 7, 333–341 (2012)

    Article  Google Scholar 

  7. Zarjam, P., Epps, J., Lovell, N.H.: Beyond subjective self-rating: EEG signal classification of cognitive workload. IEEE Trans. Auton. Ment. Dev. 7, 301–310 (2015)

    Article  Google Scholar 

  8. Plarre K., Raij A.B., Hossain M., et al.: Continuous inference of psychological stress from sensory measurements collected in the natural environment. In: Proceedings of ACM/IEEE Conference on Information Processing in Sensor Networks, pp. 97–108 (2011)

    Google Scholar 

  9. Ma, Q.G., Shang, Q., Fu, H.J., Chen, F.Z.: Mental workload analysis during the production process: EEG and GSR activity. Appl. Mech. Mater. 220–223, 193–197 (2012)

    Google Scholar 

  10. Kosch, T., Hassib, M., Buschek, D., Schmidt, A.: Look into my eyes: using pupil dilation to estimate mental workload for task complexity adaptation. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems - CHI 2018, pp. 1–6. ACM Press, Montreal (2018)

    Google Scholar 

  11. Hincks, S.W., Afergan, D., Jacob, R.J.K.: Using fNIRS for real-time cognitive workload assessment. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience, pp. 198–208. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-39955-3_19

    Chapter  Google Scholar 

  12. Chen, F., et al.: Robust Multimodal Cognitive Load Measurement. Springer International Publishing, Cham (2016)

    Book  Google Scholar 

  13. Seoane, F., et al.: Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 14, 7120–7141 (2014)

    Article  Google Scholar 

  14. Li, Y., Burns, C., Hu, R.: Understanding automated financial trading using work domain analysis. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 59, pp. 165–169 (2015)

    Google Scholar 

  15. Rusnock, C.F., Borghetti, B.J.: Workload profiles: a continuous measure of mental workload. Int. J. Ind. Ergon. 63, 49–64 (2018)

    Article  Google Scholar 

  16. Valenza, G., Citi, L., Garcia, R.G., Taylor, J.N., Toschi, N., Barbieri, R.: Complexity variability assessment of nonlinear time-varying cardiovascular control. Sci. Rep. 7, 42779 (2017)

    Article  Google Scholar 

  17. Kim, J., Andre, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2067–2083 (2008)

    Article  Google Scholar 

  18. ElKomy, M., Abdelrahman, Y., Funk, M., Dingler, T., Schmidt, A., Abdennadher, S.: ABBAS: an adaptive bio-sensors based assistive system. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA 2017, pp. 2543–2550. ACM Press, Denver (2017)

    Google Scholar 

  19. Kosch, T., Abdelrahman, Y., Funk, M., Schmidt, A.: One size does not fit all: challenges of providing interactive worker assistance in industrial settings. In: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers on - UbiComp 2017, pp. 1006–1011. ACM Press, Maui (2017)

    Google Scholar 

  20. Kuronen, E.: EPIC sensors in electrocardiogram measurement. Master thesis, Oulu University of Applied Sciences (2013)

    Google Scholar 

  21. Draghici, A.E., Taylor, J.A.: The physiological basis and measurement of heart rate variability in humans. J. Physiol. Anthropol. 35, 22 (2016)

    Article  Google Scholar 

  22. Spencer, R.L., Deak, T.: A users guide to HPA axis research. Physiol. Behav. 178, 43–65 (2017)

    Article  Google Scholar 

  23. Bornewasser, M., Bläsing, D., Hinrichsen, S.: Informatorische Montageassistenzsysteme in der manuellen Montage: Ein Werkzeug zur Reduktion mentaler Beanspruchung. Z. Arb. Wiss. 72, 264–275 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the project Montexas4.0 (FKZ 02L15A261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Bläsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bläsing, D., Bornewasser, M. (2019). A Strain Based Model for Adaptive Regulation of Cognitive Assistance Systems—Theoretical Framework and Practical Limitations. In: Karwowski, W., Ahram, T. (eds) Intelligent Human Systems Integration 2019. IHSI 2019. Advances in Intelligent Systems and Computing, vol 903. Springer, Cham. https://doi.org/10.1007/978-3-030-11051-2_2

Download citation

Publish with us

Policies and ethics