Skip to main content

Gathering

  • Chapter
  • First Online:
Distributed Computing by Mobile Entities

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11340))

Abstract

In this Chapter, we focus on the Gathering problem: that is, the problem of having the robots, initially located in arbitrary distinct points of the plane, gather in the exact same location. In this Chapter we examine Gathering in the standard \(\mathcal{OBLOT}\) model when robots have unlimited visibility; we also briefly review results about the relaxed problem of Convergence, where robots only need to move infinitely close to each other, without necessarily reaching the same point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15(5), 818–828 (1999)

    Article  Google Scholar 

  2. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput. Geom. 3, 177–191 (1988)

    Article  MathSciNet  Google Scholar 

  3. Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Fault-tolerant gathering of asynchronous oblivious mobile robots under one-axis agreement. J. Discrete Algorithms 36, 50–62 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Gathering of opaque robots in 3D space. In: 19th International Conference on Distributed Computing and Networking (ICDCN), pp. 1–10 (2018)

    Google Scholar 

  5. De Carufel, J.-L., Flocchini, P.: Fault-induced dynamics of oblivious robots on a line. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 126–141. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_9

    Chapter  Google Scholar 

  6. Cicerone, S., Di Stefano, G., Navarra, A.: Gathering of robots on meeting-points: feasibility and optimal resolution algorithms. Distrib. Comput. 31(1), 1–50 (2018)

    Article  MathSciNet  Google Scholar 

  7. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: 9th International Colloquium on Structural Information and Communication Complexity (SIROCCO), pp. 57–72 (2002)

    Google Scholar 

  9. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)

    Article  MathSciNet  Google Scholar 

  10. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 549–560. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_45

    Chapter  Google Scholar 

  11. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_52

    Chapter  Google Scholar 

  12. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410, 481–499 (2009)

    Article  MathSciNet  Google Scholar 

  13. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

    Article  MathSciNet  Google Scholar 

  14. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006). https://doi.org/10.1007/11864219_4

    Chapter  Google Scholar 

  15. Défago, X., Gradinariu, M., Messika, S., Raipin Parvédy, P.: Fault and byzantine tolerant self-stabilizing mobile robots gathering - feasibility study. Technical report (2016)

    Google Scholar 

  16. Di Luna, G., Flocchini, P., Santoro, N., Viglietta, G.: Turingmobile: a turing machine of oblivious mobile robots with limited visibility and its applications. In: 32nd International Symposium on Distributed Computing (DISC) (2018)

    Google Scholar 

  17. Durocher, S., Kirkpatrick, D.: The projection median of a set of points. Comput. Geom.: Theory Appl. 42(5), 364–375 (2009)

    Article  MathSciNet  Google Scholar 

  18. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous mobile robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)

    Article  Google Scholar 

  19. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous with constant memory. Theor. Comput. Sci. 621, 57–72 (2016)

    Article  MathSciNet  Google Scholar 

  20. Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous pattern formation by anonymous oblivious mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

    Article  MathSciNet  Google Scholar 

  21. Gan Chaudhuri, S., Mukhopadhyaya, K.: Leader election and gathering for asynchronous fat robots without common chirality. J. Discrete Algorithms 33, 171–192 (2015)

    Article  MathSciNet  Google Scholar 

  22. Heriban, A., Défago, X., Tixeuil, S.: Optimally gathering two robots. In: 19th International Conference on Distributed Computing and Networking (ICDCN), pp. 1–10 (2018)

    Google Scholar 

  23. Izumi, T., et al.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)

    Article  MathSciNet  Google Scholar 

  24. Katreniak, B.: Convergence with limited visibility by asynchronous mobile robots. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 125–137. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22212-2_12

    Chapter  Google Scholar 

  25. Kupitz, Y., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli problem. Intuitive Geom. 6, 55–127 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. Part 2: the asynchronous case. SIAM J. Control. Optim. 46(6), 2120–2147 (2007)

    Article  MathSciNet  Google Scholar 

  27. Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching: near-gathering for autonomous mobile robots. Distrib. Comput. 28(5), 333–349 (2015)

    Article  MathSciNet  Google Scholar 

  28. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)

    Article  MathSciNet  Google Scholar 

  29. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. ACM Trans. Auton. Adapt. Syst. 4(1), 1–27 (2009)

    Article  Google Scholar 

  30. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

  31. Weiszfeld, E.: Sur le point pour lequel la somme des distances de \(n\) points donnés est minimum. Tohoku Math. 43, 355–386 (1936)

    MATH  Google Scholar 

  32. Yamamoto, K., Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: The optimal tolerance of uniform observation error for mobile robot convergence. Theor. Comput. Sci. 444, 77–86 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Flocchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flocchini, P. (2019). Gathering. In: Flocchini, P., Prencipe, G., Santoro, N. (eds) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science(), vol 11340. Springer, Cham. https://doi.org/10.1007/978-3-030-11072-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11072-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11071-0

  • Online ISBN: 978-3-030-11072-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics