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Abstract. We propose a new method for fully automatic landmark lo-
calisation using Convolutional Neural Networks (CNNs). Training a CNN
to estimate a Gaussian response (“heatmap”) around each target point
is known to be effective for this task. We show that better results can be
obtained by training a CNN to predict the offset to the target point at
every location, then using these predictions to vote for the point posi-
tion. We show the advantages of the approach, including those of using
a novel loss function and weighting scheme. We evaluate on a dataset of
radiographs of child hips, including both normal and severely diseased
cases. We show the effect of varying the training set size. Our results
show significant improvements in accuracy and robustness for the pro-
posed method compared to a standard heatmap prediction approach and
comparable results with a traditional Random Forest method.

Keywords: Perthes disease, X-rays, paediatrics, convolutional neural
network (CNN), fully convolutional network (FCN), deep learning, vot-
ing.

1 Introduction

Locating landmarks on medical images is an important first step in many anal-
ysis tasks, particularly those requiring geometric measurements of the shape of
structures. Many methods have been proposed for this task, with some of the
most effective using random forest regression-voting (RFRV) [1, 2] and, more
recently, deep learning approaches [3–6].

Deep learning has been a popular method to extract information for classi-
fication, recognition and regression tasks. In various fields, convolutional neural
networks (CNNs) have become the state-of-the-art, out-performing many tradi-
tional machine learning methods. For landmark localisation, including detecting
anatomical landmarks in medical images [7,8] and human pose estimation [4,9],
an effective technique has been to apply a CNN to estimate a new image with a
Gaussian blob around each predicted landmark position (a so-called “heatmap”).
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Fig. 1. Overview of our landmark localisation method in child hip radiographs: (a) A
full pelvic radiograph. (b) The global searcher network locates two reference points to
estimate the pose of the proximal femur. (c) A patch containing the approximately
located femur is fed into the local search network to vote for the position of each
landmark. (d) The fully automatically predicted landmark positions.

This has been shown to yield better results than directly regressing the landmark
locations which tend to have a highly non-linear relationship to features [10].

We propose a novel voting-based scheme to identify landmark locations. We
train a fully convolutional NN to estimate the displacement of every pixel from
each target landmark, together with an associated weight. These displacements
can then be used to vote for the landmark location, integrating information from
the local area. We propose a novel loss function to train the CNN for this task,
which focuses attention on the target regions. The combination of regressing the
pixel offsets and heatmap weights adds further novelty to the approach.

We evaluate the proposed weighted heatmap displacement voting (WHDV)
approach on the challenging problem of locating the outline of normal and badly
diseased proximal femurs in radiographs of children, showing that WHDV signif-
icantly improves both accuracy and robustness compared to a standard heatmap
prediction approach. We also show how the performance varies as the number
of training examples increases. The overall pipeline can be seen in Fig. 1.

This paper makes three contributions: (i) We describe a novel method of
landmark location which improves upon the widely used “heatmap” approach;
(ii) we describe extensive experiments characterising the performance of the sys-
tem as the size of the training set increases. This includes a detailed comparison
with random forest regression-voting constrained local models (RFRV-CLMs)
demonstrating that unless large numbers of examples are available the latter are
to be preferred to CNN approaches; (iii) we demonstrate an automatic system
for locating the outline of both normal and diseased femurs, showing that shape
model-based systems can deal with considerable abnormalities in this case.

2 Related Work

Pfister et al. [4] used a CNN to regress heatmaps for each point, and dense
optical flow to warp landmark positions onto videos for human pose estimation.
The paper is one of the earliest to regress heatmaps through a deep network and
to combine the results with an implicit spatial model.



To detect multiple landmarks on two-dimensional (2D) radiographs and three-
dimensional (3D) magnetic resonance imaging (MRI) images of hands, Payer et
al. [7] proposed a novel CNN (named SpatialConfiguration-Net) that was trained
end-to-end to detect 37 landmarks in the radiographs and 28 in the MRI images.
The new architecture could learn local features and imposed constraints on the
spatial configuration of landmarks.

Bulat and Tzimiropoulos [9] proposed a CNN cascaded architecture that
consisted of two components: a part detection network for detecting human body
parts and a deep regression subnetwork that was able to regress the landmark
locations using heatmaps, regardless of whether they were occluded or not.

Using the challenging COCO dataset for detecting keypoints, Papandreou et
al. [11] used an RCNN detector to find people and estimate keypoints on each
using heatmaps and offsets using a fully convolutional ResNet [12]. Both outputs
were combined with a novel aggregation function to obtain localised keypoint
predictions.

Belagiannis and Zisserman [6] estimated 2D human poses using a CNN with
a recurrent module that combined intermediate feature representations to learn
the image context and improve the final heatmap predictions in challenging
datasets, including those classed as “in-the-wild”.

Rather than using heatmaps, the relative position of landmarks can be pre-
dicted directly. The majority of such work has focused on medical images. Chen
et al. [3] estimated displacements from randomly chosen patches to unknown
landmark positions. These patches then voted on the final landmark position.
The overall shape was regularised with a statistical shape model.

Aubert et al. [5] used a simple CNN to predict the 3D landmark of vertebral
centres. The training used frontal and lateral hip patches to estimate the 2D
displacement in the x plane for the frontal and lateral view and for the overall
displacement in the y plane. The 3D landmark was determined using epipolar
geometry.

Sofka et al. [13] used a fully convolutional network (FCN) to regress point
locations. They created a center of mass layer that computed the mean position
of the network prediction output. This had an advantage over direct heatmap
regression as it could predict subpixel values and the objective function could
penalise measurement length differences from the ground truth for their task.
This differs from our approach as we calculate the landmark positions outside
of the network (with a voting scheme) and we do not need a separate layer to
specifically do this task.

Using limited medical image training data, Zhang et al. [8] extracted millions
of images patches to be fed into a two-stage convolutional network that first
output the predicted displacement vectors, and then directly predicted 1200
landmarks in 3D MRI brain scans and 7 landmarks from 3D tomography images
of prostates.

Less common is a combination of heatmaps and displacements. Zhang et
al. [14] proposed the use of displacement maps to explicitly model the spatial
context information of cone-beam computed tomography scans. They used the



estimated displacement maps from the previous step as a guide to introduce a
joint learning framework for bone segmentation and landmark localisation. The
heatmaps were regressed in the second stage as the ground truth landmark areas.

3 Fully Convolutional Network with Global and Local
Searchers

Our fully automated method has two stages: (i) a global search over the whole
image for two reference points on the target object, which then define its position,
orientation and scale; (ii) a local search in a region defined by these reference
points to find n landmark points on the object. Both global and local search use
the same approach to identify point positions.

We use two separate search stages as a full pelvic X-ray contains many similar
features, especially when it comes to the opposite hip. The global search aims to
find the position of the left-anatomical femur to then improve the local search
performance. Using two reference points to crop the region of interest, in this case
the femur, is an established technique to reduce the search area of a potentially
cluttered radiograph [1]. To summarise the differences between the global and
local searcher: the global searcher scans the whole pelvic X-ray for two key
reference points and crops the detected femur; the local searcher uses the cropped
image to locate 58 landmark points in a local region of the overall radiograph.

In each case we use a CNN to take the target image (for global search) or
sampled region (for local search) and compute a set of output planes for each
point. In the original “heatmap” approach one would compute a single image
plane for each point. In our modified version we predict three planes per point,
an x displacement, a y displacement and a weight plane. We use these to vote for
the position of each point and take the maximum response in the accumulated
vote image as the final point location.

3.1 Convolutional Network with Weighted Heatmap Loss

We use a modified version of the widely used U-Net architecture [15]. U-Net
acts as a convolutional auto-encoder with added skip connections from encoder
layers to decoder layers that are on the same level. Our modifications are in line
with those in [7], where max pooling is replaced with average pooling and up-
convolution layers are replaced with upsampling. Our method is similar to [11]
in that it uses heatmaps and displacement vectors, however our approach differs
by using a vote from every pixel to determine the landmark rather than using
probability of being within a disk surrounding a keypoint. Further, we do not
require pre-training and use a computationally simpler network architecture,
U-net, over the ResNet-101 [12] pretrained on Imagenet.



Training For each input image (with known landmark positions, (xp, yp), p =
1, . . . , n), we constructed three ground truth planes P p

x , P p
y , P p

w as follows:

P p
x (i, j) = t(i− xp),
P p
y (i, j) = t(j − yp),
P p
w(i, j) = exp(−|(i, j)− (xp, yp)|2/2σ2).

(1)

The function t(x) truncates the input to a fixed range:

t(x) =


−k if x < −k,
k if x > k,

x otherwise,

(2)

where k is the displacement value chosen through empirical experiments. Note
that P p

w is the traditional “heatmap”, a Gaussian blob centred on the land-
mark. Px and Py are displacement planes and σ is the standard deviation of the
Gaussian function.

We trained the CNN to predict these 3n planes for each training image,
using a loss function which encourages accurate displacement predictions near
the points:

LossPerP ixel(P̂ p
w, P̂

p
x , P̂

p
y ) = P p

w((P p
x − P̂

p
x )2 + (P p

y − P̂
p
y )2)) + (P p

w− P̂
p
w)2, (3)

where P̂ p
w, P̂

p
x , P̂

p
y are the outputs of the network. Note that scaling the first term

by P p
w down-weights the position prediction away from the points, where it is

not needed.

Point Localisation To locate points on a new image, we feed the image to
the CNN to generate the predicted planes. For each point p we then create a

vote image, Vp, by scanning through all pixels (i, j), voting at (i+ P̂ p
x (i, j), j +

P̂ p
y (i, j)). The vote image is then multiplied (pixel-wise) by the weight image

P̂ p
w(i, j). We smooth the vote image with a Gaussian with a SD = 4, which was

chosen through experiments by changing the SD from 1. . .6 and choosing the
best performing value. The maximum peak of the vote image is used to estimate
the point positions.

4 Experiments

We performed a series of experiments to accurately locate landmarks along the
proximal femur in radiographs of children’s hips. To evaluate the performance
of the proposed WHDV approach, we compare with two FCN heatmap-based
approaches and a traditional machine learning method: RFRV [1,2].



4.1 Dataset

The dataset consists of 1,696 radiographs of hips from children aged between 2
and 11 years, with some affected by Perthes disease, where the blood supply to
the growth plate of the bone at the end of the femur becomes inadequate [16].
This dataset is challenging as the hip is still growing during childhood, meaning
the femur has growth areas such as the femoral head and greater trochanter,
and because there is significant shape and appearance change due to disease
(Fig. 2(b)).

We conducted 3-fold cross-validation experiments for a range of training set
sizes, splitting the data into random subsets of 100, 200, 500 and 1000. The
test data consists of 500 randomly chosen images (the same set used for all
experiments). The test data does not overlap with the training data for any of
the subsets. All images have been manually annotated with 58 points by two
different people chosen randomly from a pool of ten trained annotators. The
ground truth is then created by averaging the point positions between the two
annotators.

For the deep learning based approaches, the data was augmented with ran-
dom rotations (between 5◦ clockwise and 35◦ anti-clockwise) once for each image
to allow for rotation variants (note that RFRV also includes random rotations
as part of the training). The reason for the imbalance in rotation values is that
rotating the hip too far clockwise would create an unrealistic pose for a pelvic
X-ray.

4.2 Network Parameters

Our FCN takes input images of size 256× 192 (global search) or 224× 224 (local
search) and generates 3n output planes of the same size as described above.
During training, 15% of the training set is used for validation. To ensure the
validation set did not use a portion of the training set, we added 15% additional
images to the training set. We performed 3-fold cross-validation experiments per
method, where the reported results will show the average over all 3 folds.

We chose the Adam [17] optimiser through empirical experiments where all of
the available optimisers in Keras (including stochastic gradient descent, Nadam
and RMSProp) were tested with the network and the best performing chosen.
We used the default parameters suggested in [17], where the learning rate was
set to 0.001, the exponential decay rate for the first moment estimates (β1) was
set to 0.9 and the exponential decay rate for the second-moment estimates (β2)
was set to 0.999. To prevent division by zero, ε was set to 10−7. The batch size
was set to 10 and training was completed using an NVIDIA Titan Xp GPU. We
use Keras [18] with a Tensorflow [19] backend.

4.3 Global Search

We focused on detecting the left proximal femur in full pelvic images. Each image
was scaled to 192× 256 along with 2 ground truth reference points (Fig. 2(a)).



(a) (b)

Fig. 2. (a) Two reference points were chosen to train the global searcher to locate the
left proximal femur. Note that the input image is a full pelvic image, adding to the
detection difficulty. (b) Sample images from the dataset showing the challenging nature
of the diseased proximal femurs.

Each image was fed into the weighted heatmap loss network with the 3 ground
truth elements (P p

x , P p
y , P p

w). The network was trained to regress heatmaps and
displacements for the two reference points, and landmark voting was applied to
estimate their position. The latter was then used to sample the region of interest
for the point localisation stage.

The two reference points were used to define the location, scale and orienta-
tion of a region of interest around the proximal femur which was sampled into a
224× 224 patch. Such patches were used to train the second local search CNN
to estimate the position of all 58 points.

4.4 Landmark Localisation Results

We investigated three CNN based methods: (i) The “Heatmap Only” (HO) ap-
proach where the network learns a heatmap centred on each landmark, trained
using a mean squared error (MSE) loss; (ii) The “Heatmap with Displacement
Voting” (HDV) method where we learned displacement and weight planes using
an MSE loss; and (iii) the full WHDV approach with novel weighted loss func-
tion. The HO approach is based on the standard heatmap generation [10]. We
note that other methods based around this, for example stacked hourglass net-
works [20], use heatmaps with a more sophisticated network structure, however
we use the basic form of heatmap regression in this paper.

We report both mean point-to-curve and mean point-to-point errors mea-
sured as a percentage of the femoral shaft width defined by the distance be-
tween the bottom two landmark points (Fig. 1(d)). For comparison, we include
results using the current state-of-the-art approach, a RFRV-CLM [1, 2] which
uses random forests with Haar features to vote on the most likely landmark po-
sition, constrained using a shape model. We evaluated the accuracy with which
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Fig. 3. The cumulative distribution functions of mean point-to-curve error for each
method as a function of training set size.

the data was annotated by comparing results of 2 independent annotators on
1,696 images. We compute the average difference of each set of annotated points
to the mean of the annotations for each image. This gives an indication of the
maximum accuracy that may be achieved given the noise on the annotations
(see curves marked “Annotator” on the graphs).

Firstly, we show the cumulative distribution function (CDF) graphs for all
methods with the mean point-to-curve and point-to-point error for each train-
ing size in Figs. 3 and 4 respectively. For WHDV and HDV, the error is re-
duced as the training size grows, however WHDV performs better than the
other ‘heatmap’approaches even with a small training set, suggesting the novel
loss function helps to stabilise the error, unlike in the similar HDV method. The
increase in training data for the proposed method has a particular impact in the
point-to-point error going from a median error of 12.5% in the 100 train set, to
6.71% in the 1000 train set.

In contrast, the RFRV-CLM method performs well for all training set sizes,
however, unlike the other methods only shows small increases in performance,
suggesting that adding more data would not effect the performance as much as
it would in the proposed method. For example, the median error in the 100 train
set and the 1000 train set was 6.92% and 5.85% respectively for the RFRV-CLM.
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Fig. 4. The cumulative distribution functions of mean point-to-point error for each
method as a function of training set size.

A comparison of each method, split into the four training set sizes for both
point-to-curve and point-to-point error (Figs. 5 and 6, respectively). These re-
sults show that the HO approach performs poorly, regardless of the amount of
training data, suggesting that the initial global search fails to locate the hip,
which leads to poor performance of the local searcher.

The proposed method is outperformed by RFRV-CLM when trained on only
100 images. However the performance gap closes rapidly as more images are used
for training. When trained with 500 examples WHDV outperforms RFRV-CLM
significantly in the 99%ile with WHDV achieving a mean point-to-curve error of
10.6% and RFRV-CLM achieving 17.2%. With 1000 images WHDV and RFRV-
CLM achieve a mean point-to-curve error of 9.02% and 17.1% respectively. Thus
with larger training sets WHDV is more robust (making fewer large errors) than
the RFRV-CLM.

5 Conclusion

We have described a novel voting-based heatmap method for training CNNs to
identify the position of landmark points. Our results show that the proposed
method leads to more accurate and robust results than the commonly used
“standard heatmap” [10] approach on a challenging data set. One limitation
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Fig. 5. The cumulative distribution function comparing the performance of each
method by the training set size. The mean point-to-curve error is reported.

of the voting approach is that it cannot easily be differentiated. This would
prohibit full end-to-end training of any system using this approach as its first
stage. We showed extensive experiments in characterising the performance of
the system as training set sizes increase, which included a comparison with the
RFRV-CLM. The experiments showed that unless large numbers of training
data can be used, the latter system is to be preferred over CNN approaches.
Finally, we demonstrated an automatic system to locate the outline of both
normal and diseased femurs, showing the effectiveness of shape-model systems
when presented with considerable abnormalities.

RFRV-CLM is a mature technology and is known to work well even on rel-
atively small datasets. It also has the advantage of constraining the points with
an explicit (linear) shape model. However, it can be seen that as training data
increases, RFRV-CLM has only modest increases in performance. The proposed
WHDV method performs poorly when trained on few examples, but outperforms
RFRV-CLM in the upper percentiles of the 500 and 1000 train set sizes. Splitting
the data into disease and healthy cases would also be useful, but would require
clinical expertise to classify the ground truth. Further work will include acquisi-
tion of larger datasets with a good representation of healthy and diseased cases,
and more analysis on individual age groups and their affect on performance.
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Fig. 6. The cumulative distribution function comparing the performance of each
method by the training set size. The mean point-to-point error is reported.

The CNN, being trained on all points at once, should learn an implicit model,
but some of the errors it makes suggest that this model may not be generalising
as well as the traditional RF approach constrained with a shape model – this is
something we continue to explore. We will also evaluate whether fitting a shape
model to the voting images produces better results, though examination of the
votes in the response images suggests that this might not be the case.

Both WHDV and RFRV-CLM perform well in automatically locating land-
mark points and the outline of the proximal femurs of children, both in cases
with and without disease. When starting a new project of this nature, one will
only have a few annotated images at first - the RFRV-CLM is much more suit-
able for helping annotators when building up the training set. This is the first
step in the development of a system to quantify shape changes due to disease
and to assist clinicians in the decision making on the best course of treatment.
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