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Preface

This volume contains the papers presented at VMCAI 2019: the International Con-
ference on Verification, Model Checking, and Abstract Interpretation held during
January 13–15, 2019, in Cascais, Portugal, co-located with POPL 2019 (the annual
ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages).
Previous meetings were held in Port Jefferson (1997), Pisa (1998), Venice (2002), New
York (2003), Venice (2004), Paris (2005), Charleston (2006), Nice (2007), San
Francisco (2008), Savannah (2009), Madrid (2010), Austin (2011), Philadelphia
(2012), Rome (2013), San Diego (2014), Mumbai (2015), St. Petersburg, Florida
(2016), Paris (2017), and Los Angeles (2018).

VMCAI provides a forum for researchers from the communities of verification,
model checking, and abstract interpretation to present their research and aims to
facilitate interaction, cross-fertilization, and advancement of hybrid methods that
combine these and related areas. VMCAI topics include: program verification, model
checking, abstract interpretation, program synthesis, static analysis, type systems,
deductive methods, decision procedures, theorem proving, program certification,
debugging techniques, program transformation, optimization, hybrid and
cyber-physical systems.

This year the conference received 62 submissions, of which 27 were selected for
publication in the proceedings. Each submission was reviewed by at least three Pro-
gram Committee members, and the main selection criteria were quality, relevance, and
originality. In addition to the presentations of the 27 selected papers, the conference
also featured three invited keynote talks by Nuno P. Lopes (Microsoft Research), Kedar
Namjoshi (Nokia Bell Labs), Sylvie Putot (Ecole Polytechnique). We warmly thank
them for their participation and contributions.

We would like to thank the members of the Program Committee and the external
reviewers for their excellent work. We also thank the members of the Steering Com-
mittee, and in particular Lenore Zuck and Andreas Podelski, for their helpful advice,
assistance, and support. We thank the POPL 2019 Organizing Committee for providing
all the logistics for organizing VMCAI. We are also indebted to EasyChair for pro-
viding an excellent conference management system.

November 2018 Constantin Enea
Ruzica Piskac
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Semantics for Compiler IRs: Undefined
Behavior is not Evil!

Nuno P. Lopes

Microsoft Research
nlopes@microsoft.com

Summary

Building a compiler IR is tricky. First, it should be efficient to compile the desired
source language(s) (C, C++, Rust, etc) to this IR. Second, the IR should support all the
desired optimizations and analyses, and these should run efficiently. Finally, it should
be possible to lower this IR into the desired target(s) assembly efficiently. Striking a
good tradeoff in this design space is not easy.

Undefined behavior (UB) has been used in production compilers’ IRs for many
years, including all of GCC, ICC, LLVM, MSVC. Perhaps surprisingly, even formally
verified compilers which target safety-critical systems, such as CompCert [3], have UB
in their IR.

In this talk, we will explore what UB is, what it achieves, why it may be a good
idea, and why it is not as evil as most people think it is. This is based on work on
formalizing LLVM IR’s UB semantics [2], a memory model for LLVM supporting UB
[1], and work on formal verification of LLVM optimizations that exploit UB [4].

Short Bio: Nuno Lopes is a researcher at MSR Cambridge. He holds a PhD from the
University of Lisbon, and has previously interned at MSR Redmond, Apple, Max
Planck Institute (MPI-SWS), and the Institute for Systems and Robotics (ISR) Lisbon.
Nuno’s interests include software verification, compilers, and mixing the two.
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Designing Self-certifying Software Systems

Kedar S. Namjoshi

Bell Labs, Nokia
kedar.namjoshi@nokia-bell-labs.com

Abstract. Large software systems are hard to understand. The size and com-
plexity of the implementation, possibly written in a mix of programming lan-
guages, the number of potential configurations, concurrency, distribution, and
several other factors contribute to the difficulty of precisely analyzing system
behavior. How can one have confidence in the correct working of such a
complex system? In this talk, I explore an unusual approach to this challenge.
Suppose that a software system is designed so that it produces a mathematical
justification (a certificate) for the correctness of its result. The behavior of such a
self-certifying system can then be formally verified at run time, merely by
checking the validity of each certificate as it is generated, without having to
examine or reason directly about the system implementation. Self-certification
thus shrinks the size of the trusted computing base, often by orders of magni-
tude, as only the certificate checker must be trusted. The central research
question is the design of a certificate format that is comprehensive, easy to
generate, and straightforward to check. I will sketch how this may be done for a
variety of software system types: model checkers and static analyzers, network
operating systems, and optimizing compilers. I will also discuss several
intriguing open questions and describe some of the unexpected benefits of
certification.

Short Bio: Kedar Namjoshi is a member of technical staff at Nokia Bell Labs in
Murray Hill, NJ. He received his Ph.D. from the University of Texas at Austin with E.
Allen Emerson, and the B.Tech. degree from the Indian Institute of Technology,
Madras, both in the Computing Sciences. His research interests include program
semantics, specification logics and verification, model checking, static program anal-
ysis, distributed computing, and programming methodology.



Under and Over Approximated Reachability
Analysis for the Verification of Control

Systems

Sylvie Putot

LIX, CNRS and Ecole Polytechnique, Palaiseau, France
putot@lix.polytechnique.fr

Abstract. This talk will present a class of methods to compute under and over
approximating flowpipes [1, 2] for differential systems, possibly with delays,
systems that are pervasive in the modeling of networked control systems.
Computing over-approximations of the reachable states has become a classical
tool for the safety verification of control systems. Under-approximations are
notoriously more difficult to compute, and their use for verification much less
studied. We will discuss the guarantees and properties that can be obtained from
the joint use of these under and over-approximations for control systems with
inputs and disturbances.

Short Bio: Sylvie Putot is Professor in the Department of Computer Science of Ecole
Polytechnique. Her research focuses on set-based methods and abstractions for the
verification of numerical programs and more generally cyber-physical systems. She is
also one of the main authors of the Fluctuat static analyzer, dedicated to the analysis of
floating-point programs.

References
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