
Lecture Notes in Computer Science 11388

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Constantin Enea • Ruzica Piskac (Eds.)

Verification, Model Checking,
and Abstract Interpretation
20th International Conference, VMCAI 2019
Cascais, Portugal, January 13–15, 2019
Proceedings

123

Editors
Constantin Enea
IRIF
University Paris Diderot and CNRS
Paris, France

Ruzica Piskac
Yale University
New Haven, CT, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-11244-8 ISBN 978-3-030-11245-5 (eBook)
https://doi.org/10.1007/978-3-030-11245-5

Library of Congress Control Number: 2018966547

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-11245-5

Preface

This volume contains the papers presented at VMCAI 2019: the International Con-
ference on Verification, Model Checking, and Abstract Interpretation held during
January 13–15, 2019, in Cascais, Portugal, co-located with POPL 2019 (the annual
ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages).
Previous meetings were held in Port Jefferson (1997), Pisa (1998), Venice (2002), New
York (2003), Venice (2004), Paris (2005), Charleston (2006), Nice (2007), San
Francisco (2008), Savannah (2009), Madrid (2010), Austin (2011), Philadelphia
(2012), Rome (2013), San Diego (2014), Mumbai (2015), St. Petersburg, Florida
(2016), Paris (2017), and Los Angeles (2018).

VMCAI provides a forum for researchers from the communities of verification,
model checking, and abstract interpretation to present their research and aims to
facilitate interaction, cross-fertilization, and advancement of hybrid methods that
combine these and related areas. VMCAI topics include: program verification, model
checking, abstract interpretation, program synthesis, static analysis, type systems,
deductive methods, decision procedures, theorem proving, program certification,
debugging techniques, program transformation, optimization, hybrid and
cyber-physical systems.

This year the conference received 62 submissions, of which 27 were selected for
publication in the proceedings. Each submission was reviewed by at least three Pro-
gram Committee members, and the main selection criteria were quality, relevance, and
originality. In addition to the presentations of the 27 selected papers, the conference
also featured three invited keynote talks by Nuno P. Lopes (Microsoft Research), Kedar
Namjoshi (Nokia Bell Labs), Sylvie Putot (Ecole Polytechnique). We warmly thank
them for their participation and contributions.

We would like to thank the members of the Program Committee and the external
reviewers for their excellent work. We also thank the members of the Steering Com-
mittee, and in particular Lenore Zuck and Andreas Podelski, for their helpful advice,
assistance, and support. We thank the POPL 2019 Organizing Committee for providing
all the logistics for organizing VMCAI. We are also indebted to EasyChair for pro-
viding an excellent conference management system.

November 2018 Constantin Enea
Ruzica Piskac

Organization

Program Co-chairs

Constantin Enea IRIF, University of Paris Diderot and CNRS, France
Ruzica Piskac Yale University, USA

Program Committee

Miltiadis Allamanis Microsoft Research
Timos Antonopoulos Yale University, USA
Domagoj Babic Google, Inc.
Josh Berdine Facebook
Ahmed Bouajjani IRIF, University of Paris Diderot and CNRS, France
Patrick Cousot New York University, USA
Cezara Dragoi Inria Paris, ENS, France
Constantin Enea IRIF, University of Paris Diderot and CNRS, France
Javier Esparza Technical University of Munich, Germany
Jerome Feret Inria Paris, ENS, France
Khalil Ghorbal Inria Rennes, France
Roberto Giacobazzi University of Verona, Italy
Alberto Griggio Fondazione Bruno Kessler, Italy
Jan Kretinsky Technical University of Munich, Germany
Ori Lahav Tel Aviv University, Israel
Anthony Widjaja Lin University of Oxford, UK
Ruben Martins Carnegie Mellon University, USA
Kedar Namjoshi Nokia Bell Labs
K. Narayan Kumar Chennai Mathematical Institute, India
Dejan Nickovic Austrian Institute of Technology AIT, Austria
Jens Palsberg University of California, Los Angeles, USA
Ruzica Piskac Yale University, USA
Sylvie Putot LIX, Ecole Polytechnique
Daniel Schwartz-Narbonne Amazon Web Services
Martina Seidl Johannes Kepler University Linz, Austria
Sharon Shoham Tel Aviv University, Israel
Caterina Urban ETH Zurich, Switzerland
Lenore Zuck University of Illinois at Chicago, USA
Damien Zufferey MPI-SWS

Additional Reviewers

Alpernas, Kalev
Ashok, Pranav
Athaiya, Snigdha
Balatsouras, George
Bardin, Sebastien
Bernardi, Giovanni
Bouaziz, Mehdi
Bozga, Marius
Choi, Wontae
Cox, Arlen
Eilers, Marco
Enea, Constantin
Goubault, Eric
Gurfinkel, Arie
Habermehl, Peter
Hanam, Quinn
Herbreteau, Frédéric
Hollingum, Nicholas
Irfan, Ahmed
Itzhaky, Shachar
Jaax, Stefan
Kaminski, Benjamin Lucien
Krämer, Julia
Laroussinie, François

Le, Xuan Bach
Lefaucheux, Engel
Meggendorfer, Tobias
Meyer, Philipp
Meyer, Roland
Niskanen, Reino
Padon, Oded
Praveen, M.
Rajani, Vineet
Rotar, Alexej
Roveri, Marco
Sankur, Ocan
Sighireanu, Mihaela
Simon, Axel
Sogokon, Andrew
Srinivasan, Venkatesh
Srivathsan, B.
Thibault, Joan
Titolo, Laura
Trabish, David
Vizel, Yakir
Weininger, Maximilian
Welzel, Christoph
Wolf, Karsten

VIII Organization

Abstract of Invited Keynote Talks

Semantics for Compiler IRs: Undefined
Behavior is not Evil!

Nuno P. Lopes

Microsoft Research
nlopes@microsoft.com

Summary

Building a compiler IR is tricky. First, it should be efficient to compile the desired
source language(s) (C, C++, Rust, etc) to this IR. Second, the IR should support all the
desired optimizations and analyses, and these should run efficiently. Finally, it should
be possible to lower this IR into the desired target(s) assembly efficiently. Striking a
good tradeoff in this design space is not easy.

Undefined behavior (UB) has been used in production compilers’ IRs for many
years, including all of GCC, ICC, LLVM, MSVC. Perhaps surprisingly, even formally
verified compilers which target safety-critical systems, such as CompCert [3], have UB
in their IR.

In this talk, we will explore what UB is, what it achieves, why it may be a good
idea, and why it is not as evil as most people think it is. This is based on work on
formalizing LLVM IR’s UB semantics [2], a memory model for LLVM supporting UB
[1], and work on formal verification of LLVM optimizations that exploit UB [4].

Short Bio: Nuno Lopes is a researcher at MSR Cambridge. He holds a PhD from the
University of Lisbon, and has previously interned at MSR Redmond, Apple, Max
Planck Institute (MPI-SWS), and the Institute for Systems and Robotics (ISR) Lisbon.
Nuno’s interests include software verification, compilers, and mixing the two.

References

1. Lee, J., Hur, C.-K., Jung, R., Liu, Z., Regehr, J., Lopes, N.P.: Reconciling high-level opti-
mizations and low-level code in LLVM. In: Proceedings of the ACM on Programming
Languages, vol. 2(OOPSLA), November 2018

2. Lee, J., Kim, Y., Song, Y., Hur, C.-K., Das, S., Majnemer, D., Regehr, J., Lopes, N.P.:
Taming undefined behavior in LLVM. In: PLDI (2017)

3. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)
4. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole opti-

mizations with Alive. In: PLDI (2015)

Designing Self-certifying Software Systems

Kedar S. Namjoshi

Bell Labs, Nokia
kedar.namjoshi@nokia-bell-labs.com

Abstract. Large software systems are hard to understand. The size and com-
plexity of the implementation, possibly written in a mix of programming lan-
guages, the number of potential configurations, concurrency, distribution, and
several other factors contribute to the difficulty of precisely analyzing system
behavior. How can one have confidence in the correct working of such a
complex system? In this talk, I explore an unusual approach to this challenge.
Suppose that a software system is designed so that it produces a mathematical
justification (a certificate) for the correctness of its result. The behavior of such a
self-certifying system can then be formally verified at run time, merely by
checking the validity of each certificate as it is generated, without having to
examine or reason directly about the system implementation. Self-certification
thus shrinks the size of the trusted computing base, often by orders of magni-
tude, as only the certificate checker must be trusted. The central research
question is the design of a certificate format that is comprehensive, easy to
generate, and straightforward to check. I will sketch how this may be done for a
variety of software system types: model checkers and static analyzers, network
operating systems, and optimizing compilers. I will also discuss several
intriguing open questions and describe some of the unexpected benefits of
certification.

Short Bio: Kedar Namjoshi is a member of technical staff at Nokia Bell Labs in
Murray Hill, NJ. He received his Ph.D. from the University of Texas at Austin with E.
Allen Emerson, and the B.Tech. degree from the Indian Institute of Technology,
Madras, both in the Computing Sciences. His research interests include program
semantics, specification logics and verification, model checking, static program anal-
ysis, distributed computing, and programming methodology.

Under and Over Approximated Reachability
Analysis for the Verification of Control

Systems

Sylvie Putot

LIX, CNRS and Ecole Polytechnique, Palaiseau, France
putot@lix.polytechnique.fr

Abstract. This talk will present a class of methods to compute under and over
approximating flowpipes [1, 2] for differential systems, possibly with delays,
systems that are pervasive in the modeling of networked control systems.
Computing over-approximations of the reachable states has become a classical
tool for the safety verification of control systems. Under-approximations are
notoriously more difficult to compute, and their use for verification much less
studied. We will discuss the guarantees and properties that can be obtained from
the joint use of these under and over-approximations for control systems with
inputs and disturbances.

Short Bio: Sylvie Putot is Professor in the Department of Computer Science of Ecole
Polytechnique. Her research focuses on set-based methods and abstractions for the
verification of numerical programs and more generally cyber-physical systems. She is
also one of the main authors of the Fluctuat static analyzer, dedicated to the analysis of
floating-point programs.

References

1. Goubault, E., Putot, S.: Forward inner-approximated reachability of non-linear continuous
systems. In: Frehse, G., Mitra, S. (eds.) Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control, HSCC 2017, Pittsburgh, PA, USA, 18–20 April
2017. ACM (2017)

2. Goubault, E., Putot, S., Sahlmann, L.: Inner and outer approximating flowpipes for delay
differential equations. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol.
10982, pp. 523–541. Springer, Cham (2018)

Contents

On the Semantics of Snapshot Isolation . 1
Azalea Raad, Ori Lahav, and Viktor Vafeiadis

Program Synthesis with Equivalence Reduction . 24
Calvin Smith and Aws Albarghouthi

Minimal Synthesis of String to String Functions from Examples 48
Jad Hamza and Viktor Kunčak

Automatic Program Repair Using Formal Verification
and Expression Templates . 70

Thanh-Toan Nguyen, Quang-Trung Ta, and Wei-Ngan Chin

Lazy but Effective Functional Synthesis . 92
Grigory Fedyukovich, Arie Gurfinkel, and Aarti Gupta

Static Analysis of Binary Code with Memory Indirections
Using Polyhedra . 114

Clément Ballabriga, Julien Forget, Laure Gonnord,
Giuseppe Lipari, and Jordy Ruiz

Disjunctive Relational Abstract Interpretation for Interprocedural
Program Analysis . 136

Rémy Boutonnet and Nicolas Halbwachs

Exploiting Pointer Analysis in Memory Models for
Deductive Verification . 160

Quentin Bouillaguet, François Bobot, Mihaela Sighireanu,
and Boris Yakobowski

Small Faults Grow Up - Verification of Error Masking Robustness
in Arithmetically Encoded Programs . 183

Anja F. Karl, Robert Schilling, Roderick Bloem, and Stefan Mangard

Relatively Complete Pushdown Analysis of Escape Continuations. 205
Kimball Germane and Matthew Might

Demand Control-Flow Analysis . 226
Kimball Germane, Jay McCarthy, Michael D. Adams,
and Matthew Might

Effect-Driven Flow Analysis. 247
Jens Nicolay, Quentin Stiévenart, Wolfgang De Meuter,
and Coen De Roover

Type-Directed Bounding of Collections in Reactive Programs. 275
Tianhan Lu, Pavol Černý, Bor-Yuh Evan Chang, and Ashutosh Trivedi

Solving and Interpolating Constant Arrays Based on Weak Equivalences 297
Jochen Hoenicke and Tanja Schindler

A Decidable Logic for Tree Data-Structures with Measurements 318
Xiaokang Qiu and Yanjun Wang

A Practical Algorithm for Structure Embedding . 342
Charlie Murphy and Zachary Kincaid

EUFORIA: Complete Software Model Checking with
Uninterpreted Functions . 363

Denis Bueno and Karem A. Sakallah

Fast BGP Simulation of Large Datacenters . 386
Nuno P. Lopes and Andrey Rybalchenko

Verification of an Industrial Asynchronous Leader Election Algorithm
Using Abstractions and Parametric Model Checking 409

Étienne André, Laurent Fribourg, Jean-Marc Mota, and Romain Soulat

Application of Abstract Interpretation to the Automotive Electronic
Control System . 425

Tomoya Yamaguchi, Martin Brain, Chirs Ryder, Yosikazu Imai,
and Yoshiumi Kawamura

Syntactic Partial Order Compression for Probabilistic Reachability 446
Gereon Fox, Daniel Stan, and Holger Hermanns

Termination of Nondeterministic Probabilistic Programs. 468
Hongfei Fu and Krishnendu Chatterjee

Parametric Timed Broadcast Protocols . 491
Étienne André, Benoit Delahaye, Paulin Fournier, and Didier Lime

Flat Model Checking for Counting LTL Using Quantifier-Free
Presburger Arithmetic . 513

Normann Decker and Anton Pirogov

A Parallel Relation-Based Algorithm for Symbolic
Bisimulation Minimization . 535

Richard Huybers and Alfons Laarman

XVI Contents

Combining Refinement of Parametric Models with Goal-Oriented
Reduction of Dynamics . 555

Stefan Haar, Juraj Kolčák, and Loïc Paulevé

Mechanically Proving Determinacy of Hierarchical Block
Diagram Translations. 577

Viorel Preoteasa, Iulia Dragomir, and Stavros Tripakis

Author Index . 601

Contents XVII

	Preface
	Organization
	Abstract of Invited Keynote Talks
	Semantics for Compiler IRs: Undefined Behavior is not Evil!
	Designing Self-certifying Software Systems
	Under and Over Approximated Reachability Analysis for the Verification of Control Systems
	Contents

