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Abstract. Our aim is to statically verify that in a given reactive
program, the length of collection variables does not grow beyond a given
bound. We propose a scalable type-based technique that checks that each
collection variable has a given refinement type that specifies constraints
about its length. A novel feature of our refinement types is that the
refinements can refer to AST counters that track how many times an AST
node has been executed. This feature enables type refinements to track
limited flow-sensitive information. We generate verification conditions
that ensure that the AST counters are used consistently, and that the
types imply the given bound. The verification conditions are discharged
by an off-the-shelf SMT solver. Experimental results demonstrate that
our technique is scalable, and effective at verifying reactive programs
with respect to requirements on length of collections.

1 Introduction

Collections are widely used abstract data types in programs. Collections, by
providing a layer of abstraction, allow a programmer to flexibly choose different
implementations leading to better modularity essential for developing good
quality software. Since collections are extensively used, related performance
issues have attracted considerable attention [21, 29, 30]. Besides performance
issues, improper usage of collections may lead to security vulnerabilities such as
denial-of-service (DoS) attacks. The performance and security issues are more
pronounced in reactive programs such as service threads in operating systems or
web applications. An important category of DoS vulnerabilities is out-of-memory
error caused by collections with excessively large lengths.
Problem. The goal of this paper is to verify bounds on collection lengths using
a scalable type-directed approach. Given constraints on inputs, our technique
statically verifies at any point of execution total length of collection variables
is less than a given bound. Verifying bound on collection lengths for reactive
programs brings the following challenges:

Non-termination. Reactive programs do not terminate. The most common
method for resource bound analysis is based on finding loop bounds
[9, 15, 16, 18, 25, 31]. This method therefore does not directly apply to
reactive programs.

http://arxiv.org/abs/1810.10443v2
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Scalability. We need a scalable and modular solution, because real world
reactive programs such as web servers are large (e.g. up to 30kloc).

Non-inductiveness of invariants. The necessary safety invariants might be
non-inductive. For instance, collection lengths of a programmay be bounded,
but this is at first glance not provable by checking each statement in isolation,
because a particular statement might simply add an element to a collection,
thus breaking an invariant that is naively constructed to help verifying
boundedness.

Approach. We now describe our approach, with a focus on how the three
challenges are addressed. We develop a refinement type system, where the user
is able to specify bounds on collection lengths, as well as an overall guarantee on
the total length of all collections. These bounds might be symbolic, referring to
for instance to bounds on lengths of input collections. Our tool Quantm then
type checks the program, and proves (or refutes) the overall guarantee.

First, to address the challenges of non-termination, our system relies purely
on safety properties, never requiring a liveness property such as termination. We
also do not require finding loop bounds.

Second, to address the challenge of scalability, we use type-based reasoning
only. This entails checking at most one invariant per collection, as opposed
to one invariant per each code location (as the approaches based on abstract
interpretation [16, 18] might need).

Third, to address the challenge of non-inductiveness of invariants, we allow
the refinement refer to AST counters that count how many times an Abstract
Syntax Tree (AST) node has been executed. For instance, consider the fragment:

while (true) { if (*) { C: s.add(r1);...;D: t.add(r2); } }

and suppose we are interested in the invariant |len(s) − len(t)| ≤ 1, that is,
the difference between lengths of the two collections s and t is at most 1. The
invariant is not inductive, the statement s.add(r) breaks it. However, let C be
a counter associated with the AST node of s.add(r1), and D with t.add(r2).
The invariant len(s) + D = len(t) + C holds. We can then add a counter
axiom (D + 1 ≡ C) ∨ (C ≡ D) as the two statements are inside a same basic
block. Counter axioms are the place where the limited amount of flow-sensitive
information that our system uses is captured. The inductive invariant and the
axiom together imply the property we are interested in: | len(s)− len(t) |≤ 1.
Contributions. The main contributions of this paper are

– Refinement types for collection lengths. We propose to encode the
total length of collection variables as safety properties of all reachable
program states, as opposed to relying on analyzing time bounds. We develop
a refinement type system where the refinements allow reasoning about
collection lengths.

– AST counters for inductive invariants. A novel feature of our refinement
types is that the refinements can refer to AST counters that track how many
times an AST node has been executed. This feature enables type refinements
to track limited flow-sensitive information.
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– Empirical evaluation. Experimental results show that our approach scales
to programs up to 30kloc (180kloc in total), within 52 second of analysis time
per benchmark. Moreover, we discovered a Denial-of-Service vulnerability
in one of our benchmarks because of correctly not being able to verify
boundedness.

2 Overview

We demonstrate our approach for verifying the total collection lengths for
reactive programs on a motivating example in Figure 1.

2.1 Using Quantm

Overall, a user interacts with our tool Quantm as follows. First, they write
a driver that encodes a particular usage pattern that they are interested in.
Then they specify invariants as type annotations. After these two steps, our
type system will take care of the rest by automatically checking if the invariant
relations are valid. If the invariants are indeed valid, Quantm will automatically
discharge a query to an off-the-shelf SMT solver, returning the result “verified”
or “not verified”. The “verified” answer is conclusive, as our method is sound.
The “not verified” is inconclusive: either the bound does not hold, or the user
has not provided sufficient invariants to answer the verification problem.
Example (Blogging server). We simplified code from a Java web server based
on the Spring framework that allows users to upload a blog post, delete a blog
post and render a list of posts as an html page. Callback methods postNewBlog,
deleteBlog, and showBlogs implement these functionalities. Method driver

encodes an infinite input sequence that a user of our tool is interested in: it first
reads a blog from input and appends it to the database, then renders the blog as
an HTML page, and finally removes the blog from database. Our goal is to verify
the boundedness of total collection lengths in every method separately, when
input variables satisfy given constraints (e.g., inputs can have upper bounds on
their length). In particular, callback methods postNewBlog and deleteBlog do
not declare collection-typed variables and therefore they are vacuously bounded.
More interestingly, we would like to verify the following bounding predicates
denoted by @Guarantee in Figure 1

– The total length of collection variables in method driver is less than 2, i.e.
len(blogDB) < 2

– Total length of collection variables in method showBlogs is less than or equal
to length of input variable blogDB, i.e. len(toShow) ≤ len(blogDB) + 2

We emphasize that our approach is able to verify above bounds when there
exist neither time bounds nor input bounds, because input variables input and
blogDB have no constraint at all, i.e. a true constraint.

The notation @Inv in Figure 1 denotes a refinement type. The content
inside the brackets following @Inv is the refinement of that particular type. For
example, len(blogDB) = c8− c10 is a type refinement on variable blogDB.
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1 void driver(@Inv("true") List <String > input) {
2 @Guarantee("len(blogDB)<2")
3 @Inv("len(blogDB)=c8-c10") List <String > blogDB = new List <String >();

4 @Inv("iterOf(input)") Iterator <String > it = input.iterator ();
5 String blog;

6 while (*) {
7 blog = it.next();

8 c8: postNewBlog(blog , blogDB);
9 c9: showBlog (blogDB);

10 c10: deleteBlog(blogDB);

11 } }
12 @Summary {"len(blogDB ’)=len(blogDB )+1"}

13 void postNewBlog(String blog , List <String > blogDB ) {//callback : add post
14 blogDB.add(blog);
15 }

16 @Summary {"len(blogDB ’)=len(blogDB )-1"}
17 void deleteBlog(List <String> blogDB) { //callback : delete last post

18 blogDB.remove ();
19 }

20 @Summary {"len(blogDB ’)=len(blogDB )"}
21 void showBlogs(@Inv("true") List <String > blogDB) {
22 @Guarantee("len(toShow)<=len(blogDB)+2")

23 //callback : display blog contents
24 @Inv("len(toShow)-idx(it)=c28+c30+c33-c32") List <String > toShow = new

List <String >();
25 @Inv("iterOf(blogDB)")Iterator <String > it = blogDB.iterator ();
26 String blog;

27 blog = "Welcome !\n";
28 c28: toShow.add(b);

29 blog = "Blog begins :\n";
30 c30: toShow.add(b);

31 while (*) {
32 c32: blog = it.next();
33 c33: toShow.add(blog);

34 }
35 // render toShow as an HTML page

36 }

Fig. 1: Motivating example: a simplified version of a blogging server.

Specifying invariants with AST counters. We now explain the role of
the AST counters in the invariant. For example, if we look at the inner loop
at line 31-34 in Figure 1, the property we most likely need for list toShow is
len(toShow) ≤ idx(it) + 2, where idx(it) represents the number of elements
that has been visited using iterator it. However, this property is actually not
inductive because it breaks after line 28 (as well as line 30), as len(toShow)
is incremented by 1 but nothing else is updated in the invariant. However, we
can add AST counters to the invariant, and obtain len(toShow) − idx(it) =
c28 + c30 + c33− c32. We thus obtain an inductive invariant that is then used
as the type of toShow.

The purpose of these counters is to enable writing expressive invariants.
The interesting invariants usually do not depend on the value of the counters
(the value grows without bound for nonterminating programs), just on relations
between counters of different AST nodes. These could be seen on the example
in the previous section.

As another example, consider how we reason about the non-terminating
loop at line 6-11, we first summarize the effects of callback postNewBlog and
deleteBlog on any collection variable passed in as argument(s), which is to
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add 1 element to or remove 1 element from list blogDB. Method summaries are
automatically applied at invocation sites. Next, since we have AST counters,
we are now able to easily define the length of variable blogDB as an inductive
invariant len(blogDB) = c8−c10 (shown at line 2) that hold at before and after
every execution step. Note that this invariant serves as a safety property of all
program states under the existence of non-terminating executing traces, which
is the root cause of the mainstream approach in resource bound analysis to fail
under the scenario of reactive programs.

2.2 Inside Quantm

Typechecking. Our type system is based on Liquid types [23], where the
refinements can express facts about collections and AST counters. Our type
checking rules are standard, with added rules that capture the semantics of
collections (lists) and counters.
Constraints on AST counters. Constraints on AST counters are generated
from the Abstract Syntax Tree structure of the program. For instance, AST
counter c32 is always either greater than (by 1) AST counter c33 (after executing
line 32) or equal to it (after executing line 33) at any time during an execution.
We formalize this and other relations on counters in a set of axioms.
Verification condition generation. We generate verification conditions that
ensure that the AST counters are used consistently, and that the types imply
the given bound. For instance, now that we have invariants describing lengths
of list blogDB and toShow in the method showBlogs, we can plug in counter
axioms and check the required implications. For instance, the type of toShow is
len(toShow) − idx(it) = c28 + c30 + c33 − c32. From the counter axioms, we
have that c28 ≤ 1∧ c30 ≤ 1 (as the corresponding statements are executed once
at most) and (c32 ≡ c33+1)∨ (c32 ≡ c33) (as the corresponding statements are
sequentially executed). We then use an off-the-shelf SMT solver to check that
the inductive invariant and the counter axioms imply the guarantee that the
user specified: len(toShow) ≤ len(blogDB) + 2.

3 Quantm Type System

In this section, we present the core calculus of our target program along with
the types and refinements, and operational semantics. As usual, we write B and
Z for the Boolean and integer domains. We write v to denote a list of syntactic
elements separated either by comma or semicolon: v1, v2, . . . , vk or v1; v2; . . . ; vk.
We also write (v :: vk+1) for the list value (v1, v2, . . . , vk, vk+1). We model other
types of collection data types (such as sets and maps) as lists because of being
only interested in sizes of collection-typed variables.

3.1 Syntax and Refinement Types

Core calculus. Our core calculus focuses on methods manipulating collections
as shown in Figure 2a. A method M is composed of a sequence of input-variable
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Method definition M ::= τ u τ x = e s
Compound statements s ::= sB | {s} | if(e) then s1 else s2 | while(e) s
Basic statements sB ::= x = e | x = z.next() | y.rmv() | y.add(x) | skip
Expressions e ::= x ∈ X | u ∈ U | n ∈ Z | b ∈ B | y.iter()

| new List[τB] | e1 ⊕ e2 | e1 ⊲⊳ e2 | e1 ∨ e2 | ¬e
Variables u, x, y, z ::= x ∈ X | u ∈ U | y, z ∈ X ∪ U

(a) The core calculus.

Base types τB ::= Int | Bool | Iter[τB] | List[τB]
Refinement types τ ::= JτB⇂ rK
Refinements r ::= b ∈ B | xbool | iterOf(xlist) | e

τ
1 ⊲⊳ eτ2 | r1 ∨ r2 | ¬r

Refinement expressions eτ ::= n ∈ Z | νint | xint | len(e
τ
list) | idx(e

τ
iter) | e

τ
1 ⊕ eτ2 | c ∈ C

List expressions eτlist ::= νlist | xlist

Iterator expressions eτiter ::= νiter | xiter

Typing context Γ ::= · | Γ, x : τ

(b) Types and refinements.

Fig. 2: (a) The core calculus for methods manipulating collections. The operator
⊕ stands for arithmetic operators, while ⊲⊳ stands for comparison operators.
(b) The types and corresponding refinements. The subscripts in variables
xbool, xint, xlist, xiter ∈ X ∪U are used to emphasize their types, ⊕ is arithmetic
operator restricted to linear arithmetic, and ⊲⊳ is a comparison operator.

declarations τ u, a sequence of initialized local-variables declarations τ x = e,
and a method body s that is composed of basic and compound statements. We
denote the set of input variables and local variables by U andX , respectively. The
basic statements x=z.next(), y.rmv(), and y.add(x) provide standard operations
on iterator variable z and collection variable y. In addition, we have standard
assignment statement x = e, where e is an expression without side effects.

Refinement type system. Our type system, shown in Figure 2b, permits
type refinements over base types integer Int, boolean Bool, iterator Iter and
list List. A refinement type JτB⇂ rK further qualifies variables by providing
an assertion over the values of the variable using a predicate r. A unique
feature of our refinement predicates is that, the predicates can refer to AST
counters c ∈ C to track limited flow-sensitive information. Moreover, predicate
can refer to the variable on which the refinement is expressed using the self-
reference variable ν. A refinement can be expressed as an arbitrary Boolean
combination of Boolean values b, Boolean-typed program variables xbool,
predicates iterOf(xlist) (expressing that the variable is an iterator of a list
variable xlist), and comparisons between refinement expressions. A refinement
expression eτ is integer-typed and can be composed of integer values n, integer-
typed variable xint, length expressions len(eτlist) (representing the length of list
expression eτlist), index expressions idx(eτiter) (representing the current index of
an iterator expression eτiter), AST counter variables, and arithmetic operations
over other refinement expressions. An AST counter variable c ∈ C is associated
with an AST node. Intuitively, it counts the number of times an AST node has
been executed. List expressions eτlist could be νlist (which refers to the refined
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variable itself) or a list-typed program variable xlist. Explanation for the iterator
expression eτiter is analogous. Typing context Γ is a mapping from variables to
their types. Overall, our refinement language is in a decidable logic fragment
EUFLIA (Equality, Uninterpreted Functions and LInear Arithmetic) where
len(eτlist), idx(e

τ
iter) and iterOf(eτiter) are treated as uninterpreted functions.

3.2 Operational semantics

We define small-step operational semantics of our core calculus as well as
semantics of type refinements in Figure 3 and 4. An environment (or equivalently,
a state) η is a mapping from program variables to values, which intuitively serves
as a stack activation record. The domain of variable values include integers,
booleans, iterators, and list values. The calculus also supports lists of lists. We
denote the initial environment as ηinit. Environment ηinit initializes counters as
zero, input variables as concrete input values, and local variables as their initial
values specified in the method.

Figure 3 defines the small-step operational semantics for our core calculus.
We use the following three judgment forms:

1. Judgment form 〈η, e〉 e′ states that expression e is evaluated to expression
e′ in one evaluation step under environment η,

2. Judgment form 〈η, s〉  〈η′, s′〉 states that after one evaluation step of
executing statement s under environment η, the environment changes to
η′ and the next statement to be evaluated is s′, and

3. Judgment form 〈η, s〉 ։ η′ expresses the AST counter state transitions by
modifying η to increment the counter value associated with statement s.

Compared with standard operational semantics (IMP language [28]), there are
two main differences. The first difference is that we introduce collections into our
core calculus. The semantics of collection operations is straightforward as shown
in Figure 3. The other significant difference is due to the use of AST counters in
refinement types. Most of the differences from non-standard semantics is related
to handling of these counters. The function κ(s,M) returns the unique counter c
associated with the statement s in the method M . Notice that the intermediate
derivations of the rules may produce auxiliary statements that are not present in
the original program. Since the refinement types may not refer to these counters,
we ignore counter values for these auxiliary statements by associating them
with a same special counter ⊥, whose value we do not care about. E.g., The
conclusion of the rule E-IfExpr introduces a new ⊥if statement along with
original statements s1 and s2, associating this new if-else statement with counter
⊥. Rules E-Counter and E-Counter-Aux are mainly concerned with AST
counter bookkeeping. The explanation of other rules is straightforward.
Types and Refinements. Figure 4 defines semantics of types and refinements.
Judgment form v �η τ states that the value v conforms to a type τ under
environment η. The semantics of the base-types η[x] �η τB is straightforward
and hence omitted. The judgment form �η x : r states that variable x to
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Environment η ::= · | η[x → v] | η[u → v] | η[c →֒ n]
Values v ::= n ∈ Z | b ∈ B | Iter(n ∈ N, x ∈ X ∪ U) | (v1, v2, . . . , vn)

(a) Environment and Values

E-Var

〈η, x〉 η[x]

E-ArithL

〈η, e1〉 e′1

〈η, e1⊕e2〉 e′1⊕e2

E-ArithR

〈η, e2〉 e′2

〈η, v⊕e2〉 v⊕e′2

E-Neg

〈η, e〉 e′

〈η,¬e〉 ¬e′

E-CompL

〈η, e1〉 e′1

〈η, e1 ⊲⊳ e2〉 e′1 ⊲⊳ e2

E-CompR

〈η, e2〉 e′2

〈η, v ⊲⊳ e2〉 v ⊲⊳ e′2

E-OrL

〈η, e1〉 e′1

〈η, e1∨e2〉 e′1 or e2

E-OrR

〈η, e2〉 e′2

〈η, v∨e2〉 v∨e′2

E-Counter

κ(s,M) = c

〈η, s〉։ η[c →֒ η[c] + 1]

E-Counter-Aux

κ(s,M) = ⊥

〈η, s〉։ η

E-Iterator

〈η, y.iter()〉 Iter(0, y)

E-NewList

〈η, new List[τB]〉 ()

E-Assign

〈η, x = e〉։ η′ 〈η, e〉 ∗ v

〈η, x = e〉 〈η′[x → v], skip〉

E-Next

〈η, x = z.next()〉։ η′ η[z] = Iter(i, y)
η[y] = (v1, . . . , vn) i < n−1

〈η, x = z.next()〉 〈η′[z → Iter(i+ 1, y)][x → vi+1], skip〉

E-Add

〈η, y.add(x)〉։ η′ η[y] = (v) 〈η, x〉 v

〈η, y.add(x)〉 〈η′[y → (v :: v)], skip〉

E-Remove

〈η, y.rmv()〉։ η′ η[y] = (v :: v)

〈η, y.rmv()〉 〈η′[y → (v)], skip〉

E-IfExpr

〈η, if(e) then s1 else s2〉։ η′ 〈η, e〉 e′

〈η, if(e) then s1 else s2〉 〈η′,⊥if(e′) then s1 else s2〉

E-IfTrue

〈η, if(true) then s1 else s2〉։ η′

〈η, if(true) then s1 else s2〉 〈η′, s1〉

E-IfFalse

〈η, if(false) then s1 else s2〉։ η′

〈η, if(false) then s1 else s2〉 〈η′, s2〉

E-While

〈η, while(e) s〉։ η′

〈η, while(e) s〉 〈η′,⊥if(e) then ⊥{s;⊥while(e) s} else skip〉

E-Block

〈η, {s}〉։ η′ s = s1; s2; . . . ; sn
〈η′, s1〉 〈η′′, s′1〉 s′ = ⊥s′1; s2; . . . ; sn

〈η, {s}〉 〈η′′,⊥{s′}〉

E-BlockSkip

s = skip; s2; . . . ; sn s′ = s2; . . . ; sn

〈η, {s}〉 〈η,⊥{s′}〉

(b) Operational semantics

Fig. 3: Environment,values, and small-step operational semantics.
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η[x] �η JτB⇂ rK iff η[x] �η τB and �η x : r
�η b iff b ≡ true

�η x : ybool iff �η η[ybool]
�η x : ¬r iff (�η x : r) 6= true

�η x : r1 ∨ r2 iff �η x : r1 or �η x : r2
�η x : iterOf(y) iff for some i ≥ 0 we have η[x] = Iter(i, y)
�η x : eτ1 ⊲⊳ eτ2 iff eval(x : eτ1)η ⊲⊳ eval(x : eτ2)η
eval(x : eτ )η = v, where e = subst(x : eτ )η ∧ 〈η, e〉 ∗ v

subst(x : eτ )η = (eτ [x/ν])[ni/len(x
i
list), kj/idx(y

j

iter)] ∀xi
list, y

j

iter

where η[xi
list] = (v1, . . . , vni

) and η[yj

iter] = Iter(kj , ∗)

Fig. 4: Refinement semantics.

which expression ν in refinement r refers, conforms to the refinement under the
environment η. We exploit helper functions eval(x : eτ )η and subst(x : eτ )η in
refinement semantics defined in the following fashion:

– Function eval(x : eτ )η takes a refinement expression eτ , a variable x (to
which self-reference ν in eτ refers), and an environment η as inputs and then
returns the evaluation of refinement expression.

– Function subst(x : eτ )η takes as inputs refinement expression eτ , variable x
(to which expression ν refers), and environment η, and returns an expression
that is the result of first substituting self-reference ν with variable x and then
substituting every len(xlist) in eτ with length of list-typed variable xlist, as
well as every idx(yiter) with index value of iterator-typed variable yiter.

We write  ∗ for the transitive closure of  . Most of the refinement semantics
are straightforward. In particular, the semantics of iterOf(y) is that variable x,
to which ν refers, is an iterator for list-typed variable y.

3.3 Well-Typed Methods

We say that an environment η is reachable in a method M if 〈ηinit,M〉 ∗ 〈η, s〉.
We write ReachEnv(M) for the set of all reachable environments of M . We say
that an environment η is well-typed in M if all of the variables conform to their
types, i.e. for all x ∈ X ∪ U with type JτB⇂ rK, we have that η[x] �η JτB⇂ rK.
We write WellTyped(M) for the set of all well-typed environments in M . We say
that a method M is well-typed if all of the reachable states of M are well-typed,
i.e. ReachEnv(M) ⊆ WellTyped(M).

4 Collection Bound Verification Problem

Given a method M , our goal is to verify that if the inputs to the method satisfy a
given assumption φA, then the method M guarantees that the collection lengths
remain bounded. The guarantee requirements φG can be expressed as a predicate
constructed using the refinement language introduced in Figure 2b. Observe that,
since this verification condition is not attached to any particular variable, it is
free from predicates iterOf(xlist) and self-reference ν. We further assume that
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the assumptions on the input variables are expressed using type refinements on
the input variables. Formally, we are interested in the following problem:

Definition 1 (Collection Bound Verification Problem). Given a method

M along with its input variables with types and refinements ui : τi, and a

guarantee requirement φG , verify that every reachable environment satisfies φG,

i.e. for all η ∈ ReachEnv(M) we have that �η φG .

We present a type-directed approach to solve this problem. We first propose
type-checking rules to verify if the method is well-typed. Then, we discuss how
to automatically derive AST counter relation axioms in Section 4.2. Finally, we
reduce solving the verification problem into issuing SMT queries, in Section 4.3,
using as constraints the type refinements verified in Section 4.1 as well as AST
counter relation axioms extracted from Section 4.2 .

4.1 Type checking

Our key analysis algorithm is encoded into refinement type checking rules shown
in Figure 5. Subtyping between two refinement types is defined as the implication
relation between two refinements using the following rule:

τB1<:τB2 r1 =⇒ r2

JτB1⇂ r1K<:JτB2⇂ r2K
<:-RefinementTyp

Figure 5 defines type-checking rules for refinement types, while the rules for
base types are standard and thus presented in Appendix A. Notation τ [eτ ′/eτ ]
denotes substituting expression eτ with eτ ′ in the refinement of type τ .

The Judgment form Γ ⊢ s states that the statement s is successfully
type checked under typing context Γ if premises are satisfied. We case
split on the right hand side of assignment statement x = e into: Rule T-

AssignIter, T-Assign, T-AssignList, and T-AssignNewList. Intuitively,
type checking rules check that after applying each corresponding evaluation
rule, type refinements should still be valid. More specifically, in each type
checking rule we check for all refinements, if its validity before applying a
corresponding evaluation rule implies its validity afterwards. For example, after
applying Rule E-Add, the environment has the following updates: length of
collection variable y is incremented by 1 and the associated AST counter’s
value is incremented by 1. Therefore Rule T-Add checks the implication
of validity between a type τw[w/ν] and the result after applying to it a
substitution (τw [w/ν])[(len(y)+1)/len(y), (c+1)/c], which precisely expresses
the actual value of type τw[w/ν] after applying Rule E-Add in terms of its value
beforehand. Rule T-Remove is dual to Rule T-Add. In Rule T-AssignIter, in
addition to subtyping checking, we also check for variable z if its refinement will
still hold true after substituting iterOf(∗) with iterOf(y). The intuition behind
is that after evaluating statement z = y.iter(), variable z will become an iterator
for variable y, no matter what list it was an iterato for. For a reader interested in
why we must treat refinement iterOf(x) differently, the root cause here is that
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T-Add

κ(y.add(x),M) = c
∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[(len(y)+1)/len(y), (c+1)/c]

Γ ⊢ y.add(x)

T-Remove

κ(y.rmv(),M) = c
∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[(len(y)−1)/len(y), (c+1)/c]

Γ ⊢ y.rmv()

T-AssignIter

κ(z = y.iter(),M) = c ∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[0/idx(z), (c+1)/c]
Γ ⊢ z : τz (τz[z/ν])<:(τz[z/ν])[0/idx(z), (c+1)/c, iterOf(y)/iterOf(∗)]

Γ ⊢ z = y.iter()

T-Assign

κ(x = e,M) = c Γ ⊢ x : JτB⇂ rxK τB is not a list type
∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[e/x, (c+1)/c]

Γ ⊢ x = e

T-AssignList

κ(x = e,M) = c Γ ⊢ x : JτB⇂ rxK τB is a list type
∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[len(e)/len(x), (c+1)/c]

Γ ⊢ x = e

T-AssignNewList

κ(x = new List[τB],M) = c
∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[0/len(x), (c+1)/c]

Γ ⊢ x = new List[τB]

T-Counter

s 6= sB κ(s,M) = c
∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[(c+1)/c]

Γ ⊢c s

T-Next

κ(x = z.next(),M) = c
∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[(idx(z)+1)/idx(z), (c+1)/c]

∀(w : Jτw⇂ rwK) ∈ Γ.rw ⇐⇒ ∃x.rw

Γ ⊢ x = z.next()

T-Decl

〈ηinit, e〉 v Γ ⊢ s ∀〈〈τ x = e〉〉 ⊆ 〈〈M〉〉.v �ηinit τ

Γ ⊢ τ u τ x = e s

T-Block

s = s1; . . . ; sn
Γ ⊢c {s}

Γ ⊢ si, for all i ∈ {1, · · · , n}

Γ ⊢ {s}

T-While

Γ ⊢c while(e) s Γ ⊢ s

Γ ⊢ while(e) s

T-Skip

Γ ⊢ skip

T-If

Γ ⊢c if(e) then s1 else s2 Γ ⊢ s1 Γ ⊢ s2

Γ ⊢ if(e) then s1 else s2

Fig. 5: Type checking rules
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unlike idx(z) specifying a property of one variable, iterOf(x) actually specifies
a relation between two variables. Rule T-Assign checks if refinements will still
hold true when x becomes e, no matter if variable x is integer-typed, boolean-
typed or iterator-typed (where idx(x) becomes idx(e)). Rule T-AssignList

and Rule T-Assign are similar, except that in Rule T-AssignList we check if
refinements will still hold true when len(x) becomes len(e). We split Rule T-

AssignList from Rule Rule T-Assign, avoiding simply checking if x becoming
e will break any refinement, because assignment x = e does not make refinement
iterOf(x) become iterOf(e). In Rule T-Next, besides checking the validity
of implication, we also check if every type refinement is logically equivalent to
itself being existentially quantified by variable x. Intuitively, this ensures soundly
that the assignment in statement x = z.next() will not break any refinement,
since there is no constraint on list elements retrieved from list variable z by
invoking z.next(). Just like Rule E-Counter interleaves with every evaluation
rule in Figure 3, Rule T-Counter serves as a premise for every type checking
rule of compound statements. For every type checking rule of basic statements,
Rule T-Counter is embedded into subtyping checking. Rule T-Decl checks
that all local variables’ type refinements are valid, given their initial values. We
also define a helper function 〈〈s1〉〉 ⊆ 〈〈s2〉〉 that is used in Rule T-Decl, which
describes AST sub-node relations between AST node s2 and its sub-node s1.

SubNode-Block

s = s1; . . . ; sn

〈〈si〉〉 ⊆ 〈〈{s}〉〉, for all i ∈ {1, · · · , n}

SubNode-While

〈〈s〉〉 ⊆ 〈〈while(e) s〉〉

SubNode-If

〈〈si〉〉 ⊆ 〈〈if(e) then s1 else s2〉〉, for i ∈ {1, 2}

4.2 AST Counter Axioms

We next present the AST counter relation axioms. The goal of deriving
counter relation axioms is to improve verification precision by having additional
constraints when encoding the problem statement into SMT queries. We let
counter relations precisely correspond to abstract syntax tree structure of a
program. Respecting semantics of counters, these counters keep record of the
number of times a particular AST node has been executed at runtime.

The function ∆(s) takes as input a statement s and statically outputs a
predicate about the relations on all AST sub nodes of statement s, as well
as counter relation axioms derived from all AST sub nodes themselves. For
example, Rule R-Block extracts counter relations from a block of statements
{s}. For 1 ≤ j ≤ n − 1, in the constraint dj the counter ci associated with
statement si is either: a) equal to counter ci+1 associated with statement si+1,
when statement si and si+1 have both been executed; or b) the counter ci
is equal to ci+1+1, when statement si has been executed, but not statement
si+1. Intuitively, constraint dj describes a set of valid counter relations at one
program state, which is immediately after executing statement sj but before
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R-Block

s = s1; . . . ; sn ∆(si) = Ci and κ(si,M) = ci, for all i ∈ {1, · · · , n}

dj = (

j∧

i=1

ci ≡ ci−1 ∧ cj+1+1 ≡ cj), for all j ∈ {1, · · · , n−1}

κ({s},M) = c0 dn = (c0 ≡ · · · ≡ cn)

∆({s}) =

n∧

i=1

Ci ∧

n∨

i=1

di

R-While

∆(s) = C κ(while(e) s,M) = c0 κ(s,M) = cb

∆(while(e) s) = C

R-Basic

∆(sB) = true

R-If

∆(si) = Ci and κ(si,M) = ci, for i ∈ {1, 2} κ(if(e) then s1 else s2,M) = c0

∆(if(e) then s1 else s2) = (c0 ≡ c1 + c2) ∧ C1 ∧ C2

Fig. 6: AST Counter Axioms

executing statement sj+1. Constraint dn denotes the counter relations right after
finishing executing block statement {s}. Additionally, the value of counter c0
(associated with block statement {s} itself) is always equivalent to the value
of counter c1 (associated with the first statement s1 in the block), respecting
operational semantics of {s} defined in Rule E-Block of Figure 3. Furthermore,
the constraints Ci, for 1 ≤ i ≤ n, are recursively generated from every statement
si. Intuitively, these relations describes counter relations when flow-sensitively
executing the code block {s}.

As another example, Rule R-While extracts counter relations from a while
loop. Note that we cannot conclude any relations between counter cb (associated
with loop body s) and counter c0 (associated with loop while(e) s), because
although loop body s may be executed for a positive number times or may
not be executed, loop while(e) s will always be executed for one more time
whenever executing this AST node, according to Rule E-While in Figure 3.
Other rules are straightforward. Proof of soundness for above counter relations
is straightforward and hence omitted.

4.3 Collection Bound Verification

We formalize our approach that solves the collection bound verification problem
for method M by constructing an SMT query. We first obtain constraints from
type refinements and AST counter axioms, and then generate the following SMT
query that searches for counterexamples for the guarantee φG :

Ψast ∧
∧

〈〈τ u〉〉⊆〈〈M〉〉

Φ(u : τ) ∧
∧

〈〈τ x〉〉⊆〈〈M〉〉

Φ(x : τ) ∧ ¬φG ,

where Ψast are the constraints generated from functions ∆(s) defined in
Section 4.2. The helper function Φ(x : τ), defined in Figure 7, takes as input
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Φ(x : τB)
def
== true

Φ(x : JτB⇂ xboolK)
def
== xbool[x/ν]

Φ(x : JτB⇂ e
τ
1 ⊲⊳ eτ2K)

def
== eτ1 [x/ν] ⊲⊳ eτ2 [x/ν]

Φ(x : JτB⇂ r1 ∨ r2K)
def
== r1[x/ν] ∨ r2[x/ν]

Φ(x : JτB⇂ ¬rK)
def
== ¬r[x/ν]

Φ(x : JτB⇂ iterOf(y)K)
def
== 0 ≤ idx(x) ≤ len(y)

Fig. 7: The helper function Φ for extracting refinement constraints.

a variable x together with its type τ , and returns refinement constraints from
type τ . Intuitively, constraint Ψast soundly constrains the possible values that
AST counters could take when flow-sensitively executing a program. Constraints
Φ(u : τ) encode assumptions on the inputs to the method, and constraints
Φ(x : τ) soundly constrain the values that local variables could take. Together
they constitute a constraint on all reachable program states (which is proven
in Section 5). In other words, the conjunction of constraints defines a set of
program states that is a sound over-approximation of every actual reachable
program states of method M . Therefore, the answer to the query provides a
sound solution to the collection bound verification problem.

5 Soundness

In this section, we present theorems on refinement preservation and refinement
progress. Intuitively, refinement preservation guarantees that if a program passes
refinement type checking (Section 4.1), then it will always end up in a well-typed
environment (Section 3.3), under which we perform bound verification (Section
4.3). Refinement progress states that a program that passes type checking will
not get stuck. Refinement preservation is the core theorem, we prove it below.

Theorem 1 (Refinement preservation). If we have that η � Γ , Γ ⊢ s, and
〈η, s〉 〈η′, s′〉, then η′ � Γ and Γ ⊢ s′.

Proof. Given η � Γ and Γ ⊢ s and 〈η, s〉 〈η′, s′〉, we focus on proving η′ � Γ ,
because the validity of Γ ⊢ s′ is directly implied from the premises in Figure
5. The goal is to prove for every variable xi with type τi in Dom(η), we have
η′[xi] �η′ τi[xi/ν].

– Rule E-Add: We need to prove that if η � Γ and 〈η, y.add(x)〉 〈η′, skip〉,
then η′ � Γ . From the Rule T-Add, we have
(Fact 1): η � Γ implies that η � Γ [(len(y)+1)/len(y), (c+1)/c],
where we define Γ [(len(y)+1)/len(y), (c+1)/c] as performing substitution
[(len(y)+1)/len(y), (c+1)/c] for all types in typing context Γ .
From the Rule E-Add, we can infer that if 〈η, y.add(x)〉  〈η′, skip〉, then
η′(z) = η(z) for variables other than c and y. Furthermore, η′[c] = η[c] + 1
an len(η′[y]) = len(η[y]) + 1. Based on these properties of η′, we prove by
a simple induction on the structure of refinements that
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(Fact 2): if η � Γ [(len(y)+1)/len(y), (c+1)/c] then η′ ⊢ Γ .
By chaining Fact 1 and Fact 2, we can conclude the proof.

The other cases are similar or simpler, and can be found in the Appendix C. ⊓⊔

Corollary 1 states that all reachable program states are well-typed (Section
3.3). The proof immediately follows from Theorem 1.

Corollary 1. If Γ ⊢ M and η ∈ ReachEnv(M) then η � Γ .

Theorem 2 (Refinement progress). If η � Γ and Γ ⊢ s, then either

statement s is skip, or there exist η′ and s′ such that 〈η, s〉 〈η′, s′〉

The proof of Theorem 2 is standard and hence omitted.

6 Experiment

We implemented our tool Quantm in Scala using the Checker Framework
[13, 22], Microsoft Z3 [12] and Scala SMT-LIB [2]. Quantm is implemented as
a Java annotation processor, relying on the Checker Framework to extract type
annotations and perform type checking. Microsoft Z3 served as an off-the-shelf
SMT solver. We also used Scala SMT-LIB for parsing string-typed annotations.
We chose several web applications as benchmarks (180k lines of code in total),
each of which supports various functionalities. Benchmarks were collected from
different sources, including GitHub (jforum3 with 218 stars and SpringPetClinic
with 2325 stars), Google Code Archive (jRecruiter1 ), and DARPA STAC project
[1] (TextCrunchr, Braidit, WithMi, Calculator, Battleboats, Image processor,
Smartmail, Powerbroker, and Snapbuddy). To set up the experiments, we created
drivers invoking callback methods in patterns that imitate standard usage. To
support the Object-Oriented feature (which is orthogonal to the problem and
approach in the paper), we not only annotate collection-typed local variables,
but also annotate collection-typed object fields that are reachable from local
variables. Then we gave bounds to each method as tight as possible and used
Microsoft Z3 to verify the bounds.

6.1 Research questions

We evaluated our technique by answering the following research questions

RQ1. Bound verification. How effective is AST Counter Instrumentation? That
is, what percentage of methods and collection variables were verified w.r.t.
their specifications.

RQ2. Analysis speed. How fast/scalable is our verification technique?

1 https://code.google.com/archive/p/jrecruiter/
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Benchmarks Lines Verified/ Verified/ Call- Sum- Analysis
of Code Unverified Unverified backs maries time (s)

methods collections

TextCrunchr 2,150 (13+190)/5 23/5 4 9 14.7
Braidit 20,835 (8+2114)/0 50/0 8 8 84.2
jforum3 22,813 (35+1675)/8 54/10 24 27 69.8
jRecruiter 13,936 (29+933)/5 40/4 10 7 45.1
SpringPetClinic 1,429 (6+98)/0 11/1 9 12 15.8
WithMi 24,927 (30+2515)/5 35/2 5 4 82.0
Calculator 5,378 (20+316)/2 25/6 5 3 18.2
Battleboats 21,525 (8+2171)/6 12/2 5 2 75.6
Image processor 1,365 (4+110)/0 5/0 0 0 7.8
Smartmail 1,977 (7+137)/4 11/3 0 0 10.9
Powerbroker 29,374 (22+3015)/8 27/3 3 8 91.6
Snapbuddy 34,797 (57+2940)/8 88/9 5 2 107.0

Total 180,506 (239+16214)/51 381/45 78 82 622.6

Table 1: Benchmark results. “Lines of code” counts the total lines of code in projects. “Verified
methods” gives number of verified methods and unverified methods. Number of verified methods is
split into non-vacuously and vacuously verified, where being vacuously verified means not declaring
any local collection variables. “Verified/Unverified collections” gives the number of collection
variables that are verified versus unverified. “Callbacks” gives the number of invoked callbacks in
drivers. “Method summaries” gives the number of method summaries supporting verifying collection
variables that are inter-procedurally mutated. “Analysis time” indicates the speed of our analysis
on each benchmark. Experiments were conducted on a 4-core 2.9 GHz Intel Core i7 MacBook with
16GB of RAM running OS X 10.13.6.

RQ1: Bound verification. We verified 16453 methods in total, 239 of which
are non-vacuously verified (who declares at least one collection variable) and the
rest are vacuously verified (who declares no collection variable). If not considering
vacuously verified methods, then we verified 239 out of 290 (82.4%) methods. In
order to verify method boundedness, we also wrote and verified global invariants
on 381 collection variables out of a total of 426 (89.4%), as well as provided 82
method summaries. We invoked 78 callbacks from drivers. We believe this result
demonstrates that our technique is effective at verifying method and variable
specifications. Our technique works very well when there is no statement reading
a list-typed element from a collection, which if it happens, constitutes the vast
majority of the causes of the 51 unverified methods and 45 unverified collections,
because to ensure soundness we had to enforce no constraint on these list-typed
variables read from collections, leading to unboundedness. We currently do not
support this feature in the type system and we will leave it for future work. Note
that in the table we did not include unverified methods and variables caused by
orthogonal problems such as Java features (e.g. dynamic dispatch) discussed in
Section 6.2.

We attribute the effectiveness of AST Counter Instrumentation to the
scalable type checking approach and our AST counter-base approach. Also note
that without AST Counter Instrumentation, it would have not been possible to
flow-insensitively verify the desired properties. The detailed results from each
benchmark are in Table 1.
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Alias. Note that the operational semantics defined in Figure 3 does not support
aliasing among collection-typed variables. This is because aliasing is orthogonal
to the problem and approach in the paper. To demonstrate that this is indeed the
case, we extend our framework with aliasing, which we present in the Appendix
B. The implementation uses the framework from the appendix.

Case studies. We present an interesting loop that we found and simplified from
the jforum3 benchmark. In the while loop at line 4-17, line 5 reads in a String
with readLine and line 14 adds an element to list comments. Although the while
loop may not terminate, the inductive invariant len(comments)−idx(reader) =
c5− c14 is preserved before and every execution step. Here we consider variable
reader as an iterator, respecting the semantics of the readLine API.

1 @Inv("len(comments )-idx(reader )=c5-c14") List <String > comments = new

ArrayList <>();
2 // ...

3 String s;
4 while (true) {
5 c5: s = reader.readLine ();

6 if (s != null) {
7 s = s.trim();

8 }
9 if (s == null || s.length () < 1) {

10 continue ;
11 }
12 if (s.charAt (0) == ’#’) { // comment

13 if (collectComments && s.length () > 1) {
14 c14: comments .add(s.substring(1));

15 }
16 continue ;
17 }

We also discovered a Denial-of-Service bug from benchmark TextCrunchr
that is caused by a collection variable with an excessively large length.
TextCrunchr is a text analysis program that is able to perform some useful
analysis (word frequency, word length, etc.), as well as process plain text files
and compressed files, which it will uncompress to analyze the contents. The
vulnerability is in the decompressing functionality where it uses a collection
variable queue to store files to be decompressed. Our tool Quantm correctly
did not verify the boundedness of variable queue and we believe this leads to
TextCrunchr’s being vulnerable to a Zip bomb attack, because variable queue

may store an exponential number of files that is caused by a carefully crafted
zip file, which contains other carefully crafted zip files inside, thus leading
to an exponential number of files to be stored in variable queue and to be
decompressed.

RQ2: Analysis speed. On average, it takes 51.9 second to analyze a 15k
lines of code benchmark program (including vacuously verified methods) with
Quantm. The detailed results from each benchmark are in Table 1. Given the
lines of code of our benchmarks, we believe this result indicates that the speed
of our analysis benefits from being type-based and flow-insensitive, exhibiting
the potential of scaling to even larger programs.
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6.2 Limitations, future work and discussion

In experiments, we encountered collection variables that could not be annotated,
leaving Quantm unable to verify boundedness of methods that declare them.
We next categorize the reasons and discuss future work for improvements:

– To ensure soundness, we enforce no constraint on a collection-typed variable’s
length (i.e. allow it to be infinitely long), when it is the result of reading a
list-typed element from a collection. The reason is that the type system does
not yet support annotating lengths of inner lists. This extension of our type
system is left for future work.

– Not discovering the right global invariants. In the future we plan to automate
the invariant discovery process with abstract interpretation, which will
hopefully help uncover more invariants.

– Imprecision and “soundiness” caused by Java features such as aliasing,
dynamic dispatch, inner class, class inheritance and multi-threading. We
regard these as orthogonal problems to our problem statement and we could
extend our type system to support them.

Integration with building tools. To evaluate how user-friendly Quantm is
for a developer, we also evaluated how Quantm integrates with open source
repositories (i.e. jforum3, jRecruiter and SpringPetClinic) that use popular
building tools (e.g. Maven). We discovered that the configuration is reasonably
easy: Developers only need to add several Maven dependencies (including
Quantm, Checker framework, Scala library, Scala SMT-LIB and Microsoft Z3’s
Java bindings) into pom.xml and specify Quantm as an additional annotation
processor. After that, a developer could immediately start using our tool!

Annotation workflow. The typical annotation workflow of a user is to first
configure Quantm as an annotation processor, and then compile the target
code/project without any annotations. Note that errors and warnings are
expected if Quantm cannot prove boundedness of a procedure, which is
intrinsically caused by insufficient annotations (i.e. type refinements). In the
end, a user will fix the errors and warnings by annotating collection variables.
In the case of a method returning a locally allocated collection variable, we
inlined the method into its caller to ensure soundness. Additionally, to perform
inter-procedural analysis, we introduce method summaries to describe changes
in lengths of collection-typed variables caused by method invocation. Method
summaries are expressed in the refinement language defined in Figure 2b,
together with variables in their primed version, which denotes the values after
method invocation. Method summaries are automatically applied when type
checking a method invocation statement. The annotation burden for method
summaries was light (6.8 methods on average) in the experiments.

7 Related works

Type systems for resource analysis. Type-based approaches have been
proposed for resource analysis [10, 27, 26]. These works verify size relations
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between input and output list variables as a function specification. Additionally,
there is a line of works that combines a type-based approach with the idea of
amortized analysis [19, 20] to analyze resource usage. These approaches are not
able to analyze programs with mutation and it is also unclear how to adapt
them into a setting with mutation. The reason is the need for the analysis to be
flow-sensitive in the presence of mutation, because mutation causes program
variables’ sizes to change. In contrast, we emphasize that it is our novelty
to introduce AST Counter Instrumentation, making it possible to write flow-
insensitive types in the presence of mutation, and thus enjoy the benefits of
a type-based approach — being compositional and scalable. We put back the
limited flow-sensitive information (in the form of counter axioms) only after the
type checking phase.

Resource analysis by loop-bound analysis. Bound analysis techniques
[9, 15, 16, 18, 25, 31] emphasize that time bounds (especially loop bounds)
are necessary for resource bound analysis and therefore they focus on obtaining
loop bounds. However, time boundedness is actually only a sufficient condition
for resource boundedness. In contrast, our approach verifies resource bounds
even when time bounds are not available. The other difference is that, Gulwani
et al. and Zuleger et al.’s works [16, 18, 31] generate invariants at different
program locations, as opposed to our approach of using same invariants at all
program locations. In more detail, Carbonneaux et al. [9] use a Hoare logic
style inter-procedural reasoning to derive constraints on unknown coefficients
of loop bounds, who are in the form of pre-defined templates consisting of
multivariate intervals. Gulwani et al. [16] introduce a technique to first transform
multi-path loops into loop paths who interleave in an explicit way, and then
generate different invariants at different program locations. In another work,
Gulwani et al. [18], compute the transitive closure of inner loops, which are
invariants only hold true at the beginning of loops. It also utilizes several
common loop patterns to obtain ranking functions, which are eventually used
to compute loop bounds. Sinn et al. [25] flatten multi-path loops into sets of
mutual independent loop paths and uses global lexicographic ranking functions
to derive loop bounds. Similarly, Giesl et al. [15] use a standard ranking function
approach to obtain loop bounds for its bound analysis, which is a component
of its interleaving of size analysis and bound analysis. Zuleger et al. [31] txake
size-change abstraction approach from termination analysis domain into bound
analysis. Size-change abstraction relates values of variables before and after a
loop iteration at the beginning of a loop, which are eventually used to obtain loop
bounds. Additionally, although Gulwani et al. [17] also adopt a counter approach
by instrumenting loops with counters, the functionalities of counters are different.
In our AST Counter Instrumentation approach, counters enable writing flow-
insensitive global invariants under the scenario of mutation. In contrast, the
functionality of counters in Gulwani et al.’s work [17] is to make it explicit if
one loop is semantically (instead of syntactically) nested in another loop: each
loop is associated with a counter and this work encodes loop nest relations as
counter dependencies.
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Resource analysis by cost-recurrence relations. A classical approach to
cost analysis [4, 5, 6, 7, 8, 14] is to derive a set of cost recurrence relations
from the original program, whose closed-form solutions will serve as an over-
approximation of the cost usage. As pointed out by Alonso et al. [8], one of the
limitations in recurrence relation approach is that it poorly supports mutation,
because of ignoring the side effects of a callee that may have on its caller. Since
collection APIs typically have side effects, recurrence relation may not be the
best approach to reason about collection variables’ lengths. Additionally, we
believe our approach applies to a wider class of programs, because it is more
difficult to find closed-form solutions than our approach of checking if a set of
constraints implies the desired property.
Refinement types. Our type system is inspired by Rondon et al. [23]. The
subsequent work by Rondon et al. [24] propose a flow-sensitive refinement type
system to reason about programs with mutation. Similarly, Coughlin et al.’s work
[11] handles mutation via a flow-sensitive approach, allowing type refinements
to temporarily break and then get re-established later at some other control
locations. It adopts flow-sensitive analysis between control locations who break
and re-establish the invariant, respectively. Compared with Rondon et al. [24]
and Coughlin et al. [11], our work is different because it separates types and
refinements from counter relation axioms, where types and refinements are flow-
insensitive but counter relation axioms are flow-sensitive. The advantage of our
approach over Coughlin et al.’s work is that, to verify a given property, Coughlin
et al.’s work is more expensive because it is sensitive to the distance (in terms
of lines of code) between any two relevant control locations (i.e., where the
first location breaks an invariant and the second location potentially restores
the invariant). More specifically, Coughlin et al.’s work has to perform flow-
sensitive and path-sensitive symbolic execution between any two relevant control
locations. In comparison, our approach is insensitive to the distance between any
two relevant control locations.

8 Conclusion

We proposed a technique that statically verifies the boundedness of total length
of collection variables when given constraint(s) on input(s). Our technique is able
to verify the above property for non-terminating reactive programs. To ensure
scalability, we take a type-based approach and enforce using global inductive
invariants, as opposed to different invariants at different program locations. To
design global invariants for programs supporting mutation, we introduce AST
counters, which track how many times an AST node was executed. We then add
axioms on relations of the counter variables. Experimental results demonstrate
that our technique is scalable, and effective at verifying bounds.

We plan to build on this work in at least the following two directions: (i)
extending from collection lengths to general memory usage, (ii) generalizing the
AST counter technique and applying it in different contexts.
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A Base type checking

We present base type checking rules in this section, which guarantees that a
type-checked program will not get stuck.

BaseT-Add

Γ ⊢ y : List[τB]
Γ ⊢ x : τB

Γ ⊢ y.add(x)

BaseT-Remove

Γ ⊢ y : List[τB]

Γ ⊢ y.rmv()

BaseT-Iter

Γ ⊢ y : List[τB]
Γ ⊢ z : Iter[τB]

Γ ⊢ z = y.iter()

BaseT-AssignArith

Γ ⊢ x : Int
Γ ⊢ e1 : Int Γ ⊢ e2 : Int

Γ ⊢ x = e1 ⊕ e2

BaseT-AssignComp

Γ ⊢ x : Bool
Γ ⊢ e1 : Int Γ ⊢ e2 : Int

Γ ⊢ x = e1 ⊲⊳ e2

BaseT-AssignOr

Γ ⊢ x : Bool
Γ ⊢ e1 : Bool Γ ⊢ e2 : Bool

Γ ⊢ x = e1 ∨ e2

BaseT-AssignNeg

Γ ⊢ x : Bool Γ ⊢ e : Bool

Γ ⊢ x = ¬e

BaseT-AssignInt

Γ ⊢ x : Int

Γ ⊢ x = n

BaseT-AssignBool

Γ ⊢ x : Bool

Γ ⊢ x = b

BaseT-AssignIntExpr

Γ ⊢ x : Int Γ ⊢ e : Int

Γ ⊢ x = e

BaseT-AssignBoolExpr

Γ ⊢ x : Bool
Γ ⊢ e : Bool

Γ ⊢ x = e

BaseT-AssignIter

Γ ⊢ x : Iter[τB]
Γ ⊢ e : Iter[τB]

Γ ⊢ x = e

BaseT-AssignList

Γ ⊢ x : List[τB]
Γ ⊢ e : List[τB]

Γ ⊢ x = e

BaseT-Next

Γ ⊢ x : τB
Γ ⊢ z : Iter[τB]

Γ ⊢ x = z.next()

BaseT-Decl

∀〈〈τ x = e〉〉 ⊆ 〈〈M〉〉.Γ ⊢ x = e
Γ ⊢ s

Γ ⊢ τ u τ x = e s

BaseT-NewList

Γ ⊢ x : List[τB]

Γ ⊢ x = new List[τB]

BaseT-Block

s = s1; . . . ; sn
Γ ⊢ si, for all i ∈ {1, · · · , n}

Γ ⊢ {s}

BaseT-While

Γ ⊢ s
Γ ⊢ e : Bool

Γ ⊢ while(e) s

BaseT-If

Γ ⊢ e : Bool
Γ ⊢ s1 Γ ⊢ s2

Γ ⊢ if(e) then s1 else s2

BaseT-Skip

Γ ⊢ skip

Fig. 8: Base type checking rules

B Alias

In section, we present operational semantics (Figure 10), refinement semantics
(Figure 9) and type checking rules (Figure 11) under the scenario of alias, where
we will additionally need store ρ that serves as a heap.
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η[x] �η,ρ JτB⇂ rK iff η[x] �η,ρ τB and �η,ρ x : r
�η,ρ b iff b ≡ true

�η,ρ x : ybool iff �η,ρ η[ybool]
�η,ρ x : ¬r iff (�η,ρ x : r) 6= true

�η,ρ x : r1 ∨ r2 iff �η,ρ x : r1 or �η,ρ x : r2
�η,ρ x : iterOf(y) iff for some i ≥ 0 we have η[x] = Iter(i, a) and ρ[y] = a
�η,ρ x : eτ1 ⊲⊳ eτ2 iff eval(x : eτ1)η,ρ ⊲⊳ eval(x : eτ2)η,ρ
eval(x : eτ )η,ρ = v, where e = subst(x : eτ )η,ρ ∧ 〈η, e〉 ∗ v

subst(x : eτ )η,ρ = (eτ [x/ν])[ni/len(x
i
list), kj/idx(y

j

iter)] ∀xi
list, y

j

iter

where η[xi
list] = a ∧ ρ[a] = (v1, . . . , vni

)

and η[yj

iter] = Iter(kj , ∗)

Fig. 9: Refinement semantics. (Alias)

Alias assumption. Before introducing type checking rules, we need the below
assumption to hold for any reachable state of executing method M to ensure
soundness: During execution, any two list-typed variables should either alias
with each other from beginning to end, or never alias. If this assumption
does not hold true for a method, then we consider this method could not be
verified as bounded. In implementation, to obtain alias information between
any two collection-typed variables, we checked if their types are the same,
taking advantage of the fact that generic types are invariant with respect to the
parameterized types in Java, unless bounds are involved. We do not yet consider
type bounds in implementation. Of course, we could obtain more precise alias
information by running an up-front points-to analysis (e.g. WALA [3]), but we
leave this for future work.

Additionally, we define a helper function Alias(x) that takes as input a list-
typed variable x and returns a set of list-typed variables who must alias variable
x at any time during execution.

C Proof of Theorem 1

Proof. (of Theorem 1). Given η � Γ and Γ ⊢ s and 〈η, s〉  〈η′, s′〉, we focus
on proving η′ � Γ , because the validity of Γ ⊢ s′ is directly implied from the
premises in Figure 5. The goal is to prove for every variable xi with type τi in
Dom(η), we have η′[xi] �η′ τi[xi/ν].

– Rule E-Add: We need to prove that if η � Γ and 〈η, y.add(x)〉 〈η′, skip〉,
then η′ � Γ . From the Rule T-Add, we have
(Fact 1): η � Γ implies that η � Γ [(len(y)+1)/len(y), (c+1)/c],
where we define Γ [(len(y)+1)/len(y), (c+1)/c] as performing substitution
[(len(y)+1)/len(y), (c+1)/c] for all types in typing context Γ .
From the Rule E-Add, we can infer that if 〈η, y.add(x)〉  〈η′, skip〉, then
η′(z) = η(z) for variables other than c and y. Furthermore, η′[c] = η[c] + 1
an len(η′[y]) = len(η[y]) + 1. Based on these properties of η′, we prove by
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a simple induction on the structure of refinements that
(Fact 2): if η � Γ [(len(y)+1)/len(y), (c+1)/c] then η′ ⊢ Γ .
By chaining Fact 1 and Fact 2, we can conclude the proof.

– Rule E-Remove: Proof is dual to the proof for Rule E-Add.
– Rule E-Next: From the Rule T-Next, we have

(Fact 1): η � Γ implies that η � Γ [(idx(z)+1)/idx(z), (c+1)/c].
From the Rule E-Next, we can infer that if 〈η, x = z.next()〉 〈η′, skip〉,
then for every variable xi ∈ Dom(η) \ {c, z, x}, we have η′[xi] = η[xi],
len(xi), iterOf(xi) and idx(xi) remain unchanged before and after applying
Rule E-Next. We also have η′[c] = η[c] + 1, the value of idx(z) in
environment η′ becomes idx(z) + 1 where the latter idx(z) refers to its
value in environment η. Additionally, len(x)/idx(x)/iterOf(x) becomes
an arbitrary value. Based on these properties of η′, we prove by a simple
induction on the structure of refinements that
(Fact 2): if η � Γ [(idx(z)+1)/idx(z), (c+1)/c] and if r does not use variable
x, then η′ ⊢ Γ . It is checked by the equivalence between a refinement and its
existential quantification of variable x in last premise of Rule T-Next that
if r does not use variable x.
By chaining Fact 1 and Fact 2, we can conclude the proof.

– Rule E-Assign: From the Rule T-Assign, we have
(Fact 1): η � Γ implies that η � Γ [e/x, (c+1)/c].
From the Rule E-Next, we can infer that if Γ ⊢ x = z.next(), we have
〈η, x = e〉  〈η′, skip〉, for every able xi ∈ Dom(η) \ {c, x}, we have
η′[xi] = η[xi], len(xi), iterOf(xi) and idx(xi) remain unchanged before
and after applying Rule E-Assign. We also have η′[c] = η[c] + 1, η′[x] = v
where 〈η, e〉  ∗ v. Based on these properties of η′, we prove by a simple
induction on the structure of refinements that
(Fact 2): if η � Γ [e/x, (c+1)/c] then η′ ⊢ Γ .
By chaining Fact 1 and Fact 2, we can conclude the proof.

– Rule E-Assign when right hand side is new List[τB]: From the Rule T-

AssignNewList, we have
(Fact 1): η � Γ implies that η � Γ [0/len(x), (c+1)/c].
From the Rule E-Assign, we can infer that if 〈η, x = new List[τB]〉  
〈η′, skip〉, for every able xi ∈ Dom(η)\{c, x}, we have η′[xi] = η[xi], len(xi),
iterOf(xi) and idx(xi) remain unchanged before and after applying Rule
E-Assign. We also have η′[c] = η[c] + 1 and len(x) becomes 0. Based on
these properties of η′, we prove by a simple induction on the structure of
refinements that
(Fact 2): if η � Γ [0/len(x), (c+1)/c] then η′ ⊢ Γ .
By chaining Fact 1 and Fact 2, we can conclude the proof.

– Rule E-Assign when right hand side is a list-typed variable: From the
Rule T-AssignList, we have
(Fact 1): η � Γ implies that η � Γ [len(e)/len(x), (c+1)/c].
From the Rule E-Assign, we can infer that if 〈η, x = e〉  〈η′, skip〉, for
every able xi ∈ Dom(η) \ {c, x}, we have η′[xi] = η[xi], len(xi), iterOf(xi)
and idx(xi) remain unchanged before and after applying Rule E-Assign.
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We also have η′[c] = η[c] + 1 and len(x) becomes len(e). Based on
these properties of η′, we prove by a simple induction on the structure of
refinements that
(Fact 2): if η � Γ [len(e)/len(x), (c+1)/c] then η′ ⊢ Γ .
By chaining Fact 1 and Fact 2, we can conclude the proof.

– Rule E-Assign when right hand side is y.iter(): From the Rule T-

AssignIter, we have
(Fact 1): η � Γ implies that η � Γ [0/idx(z), (c+1)/c].
From the Rule E-Assign, we can infer that if 〈η, x = y.iter()〉 〈η′, skip〉,
for every variable xi ∈ Dom(η) \ {c, x}, we have η′[xi] = η[xi], len(xi),
iterOf(xi) and idx(xi) remain unchanged before and after applying Rule
E-Assign. We also have η′[c] = η[c] + 1, idx(z) becomes 0, and any type
refinement of form iterOf(∗) for variable z becomes iterOf(y). Based on
these properties of η′, we prove by a simple induction on the structure of
refinements that
(Fact 2): if η � Γ [0/idx(z), (c+1)/c] then η′ ⊢ Γ .
By chaining Fact 1 and Fact 2, we can conclude the proof.

– Rule E-IfExpr: Proof is trivial because only the counter associated with
statement if(e) then s1 else s2 is incremented, which is checked by the
premise that uses Rule T-Counter.

– Rule E-IfTrue and Rule E-IfFalse: Proof is trivial because every type
refinement remains unchanged.

– Rule E-While: Proof is trivial because only the counter associated with
statement while(e) s is incremented, which is checked by the premise that
uses Rule T-Counter.

– Rule E-Block: Proof is trivial because only the counter associated with
statement {s} is incremented, which is checked by the premise that uses
Rule T-Counter.

– Rule E-BlockSkip: Proof is trivial because every type refinement remains
unchanged.

– Rule E-Var, E-ArithL, E-ArithR, E-CompL, E-CompR, E-OrL, E-
OrR, E-Neg, E-Iterator, E-NewList: Proof is trivial because every type
refinement remains unchanged.



Type-directed Bounding of Collections 27

Environment η ::= · | η[x → v] | η[c →֒ n]
Store ρ ::= · | ρ[a → l]
Values v ::= n ∈ Z | b ∈ B | Iter(n ∈ N, a ∈ A) | a ∈ A
List values l ::= (v1, v2, . . . , vn)

(a) Environment, Store, and Values

E-Var

〈η, x〉 η[x]

E-ArithL
〈η, e1〉 e

′

1

〈η, e1⊕e2〉 e
′

1⊕e2

E-ArithR
〈η, e2〉 e

′

2

〈η, v⊕e2〉 v⊕e
′

2

E-CompL
〈η, e1〉 e

′

1

〈η, e1⊲⊳e2〉 e
′

1⊲⊳e2

E-CompR
〈η, e2〉 e

′

2

〈η, v⊲⊳e2〉 v⊲⊳e
′

2

E-OrL
〈η, e1〉 e

′

1

〈η, e1∨e2〉 e
′

1 or e2

E-OrR
〈η, e2〉 e

′

2

〈η, v∨e2〉 v∨e
′

2

E-Neg
〈η, e〉 e

′

〈η,¬e〉 ¬e
′

E-Iterator
〈η, z = y.iter()〉։ η

′
η[y] = a

〈η, ρ, z = y.iter()〉 〈η′[z → Iter(0, a)], ρ, skip〉

E-Next
〈η, x = z.next()〉։ η

′
η[z] = Iter(i, a)

ρ[a] = (v1, . . . , vn) i < n − 1

〈η, ρ, x = z.next()〉 〈η′[z → Iter(i + 1, a)][x → vi+1], ρ, skip〉

E-Assign
〈η, x = e〉 ։ η

′
〈η, e〉 

∗
v

〈η, ρ, x = e〉 〈η′[x → v], ρ, skip〉

E-Remove
〈η, y.rmv()〉։ η

′
η[y] = a ρ[a] = (v :: v)

〈η, ρ, y.rmv()〉 〈η′
, ρ[a → (v)], skip〉

E-Add
〈η, y.add(x)〉։ η

′
η[y] = a ρ[a] = (v) 〈η, x〉 v

〈η, ρ, y.add(x)〉 〈η′
, ρ[a → (v :: v)], skip〉

E-NewList
〈η, x = new List[τB]〉։ η

′
η[x] = a

〈η, ρ, x = new List[τB]〉 〈η
′
, ρ[a → ()], skip〉

E-IfExpr
〈η, if(e) then s1 else s2〉։ η

′ 〈η, e〉 e
′

〈η, ρ, if(e) then s1 else s2〉 〈η′
, ρ,

⊥
if(e′) then s1 else s2〉

E-IfTrue
〈η, if(true) then s1 else s2〉։ η

′

〈η, ρ, if(true) then s1 else s2〉 〈η′
, ρ, s1〉

E-IfFalse
〈η, if(false) then s1 else s2〉։ η

′

〈η, ρ, if(false) then s1 else s2〉 〈η′
, ρ, s2〉

E-While
〈η, while(e) s〉։ η

′

〈η, ρ, while(e) s〉 〈η′
, ρ,

⊥
if(e) then s;⊥while(e) s else skip〉

E-Block
〈η, {s}〉։ η

′
s = s1; s2; . . . ; sn

〈η
′
, ρ, s1〉 〈η

′′
, ρ

′
, s

′

1〉 s′ =
⊥
s
′

1; s2; . . . ; sn

〈η, ρ, {s}〉 〈η′′
, ρ

′
,
⊥{s′}〉

E-BlockSkip

s = skip; s2; . . . ; sn s′ = s2; . . . ; sn

〈η, ρ, {s}〉 〈η, ρ,⊥{s′}〉

E-Counter
κ(s,M) = c

〈η, s〉։ η[c →֒ η[c] + 1]

E-Counter-Aux
κ(s,M) = ⊥

〈η, s〉։ η

(b) Operational semantics

Fig. 10: Environment, store, values and small-step operational semantics. (Alias)
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T-Add

κ(y.add(x),M) = c ∀yi, yj ∈ Alias(y).len(yi) = len(yj)

∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[len(y′) + 1/len(y′)
y′

∈Alias(y)
, (c+ 1)/c]

Γ ⊢ y.add(x)

T-Remove

κ(y.rmv(),M) = c ∀yi, yj ∈ Alias(y).len(yi) = len(yj)

∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[len(y′)− 1/len(y′)
y′

∈Alias(y)
, (c+ 1)/c]

Γ ⊢ y.rmv()

T-AssignIter

κ(z = y.iter(),M) = c ∀yi, yj ∈ Alias(y).len(yi) = len(yj)
∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[0/idx(z), (c+ 1)/c]

Γ ⊢ z : τz (τz[z/ν])<:(τz[z/ν])[0/idx(z), (c+ 1)/c, iterOf(y)/iterOf(∗)]

Γ ⊢ z = y.iter()

T-Assign

κ(x = e,M) = c Γ ⊢ x : JτB⇂ rxK
τB is not a list type ∀(w : τw) ∈ Γ.(τw [w/ν])<:(τw[w/ν])[e/x, (c+ 1)/c]

Γ ⊢ x = e

T-AssignList

κ(x = e,M) = c
Γ ⊢ x : JτB⇂ rxK τB is a list type ∀xi, xj ∈ Alias(x).len(xi) = len(xj)

∀(w : τw) ∈ Γ.(τw [w/ν])<:(τw[w/ν])[len(e)/len(x′)
x′

∈Alias(x)
, (c+ 1)/c]

Γ ⊢ x = e

T-Next

κ(x = z.next(),M) = c
∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[idx(z) + 1/idx(z), (c+ 1)/c]

∀(w : Jτw⇂ rwK) ∈ Γ.∀x′ ∈ Alias(x).rw ⇐⇒ ∃x′.rw

Γ ⊢ x = z.next()

T-Decl

〈ηinit, e〉 v Γ ⊢ s ∀〈〈τ x = e〉〉 ⊆ 〈〈M〉〉.v �ηinit,ρinit τ

Γ ⊢ τ u τ x = e s

T-NewList

κ(x = new List[τB],M) = c

∀(w : τw) ∈ Γ.(τw[w/ν])<:(τw[w/ν])[0/len(x′)
x′

∈Alias(x)
, (c+ 1)/c]

Γ ⊢ x = new List[τB]

T-Counter

s 6= sB κ(s,M) = c ∀(w : τw) ∈ Γ.τw<:τw[(c+ 1)/c]

Γ ⊢c s

T-Skip

Γ ⊢ skip

T-Block

s = s1; . . . ; sn
Γ ⊢c {s} Γ ⊢ si, for all i ∈ {1, · · · , n}

Γ ⊢ {s}

T-While

Γ ⊢c while(e) s
Γ ⊢ s

Γ ⊢ while(e) s

T-If

Γ ⊢c if(e) then s1 else s2
Γ ⊢ s1 Γ ⊢ s2

Γ ⊢ if(e) then s1 else s2

Fig. 11: Type checking rules (Alias)
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