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Abstract

Hierarchical block diagrams (HBDs) are at the heart of embedded system design tools, including
Simulink. Numerous translations exist from HBDs into languages with formal semantics, amenable to
formal verification. However, none of these translations has been proven correct, to our knowledge.

We present in this paper the first mechanically proven HBD translation algorithm. The algorithm
translates HBDs into an algebra of terms with three basic composition operations (serial, parallel, and
feedback). In order to capture various translation strategies resulting in different terms achieving dif-
ferent tradeoffs, the algorithm is nondeterministic. Despite this, we prove its semantic determinacy: for
every input HBD, all possible terms that can be generated by the algorithm are semantically equiva-
lent. We apply this result to show how three Simulink translation strategies introduced previously can
be formalized as determinizations of the algorithm, and derive that these strategies yield semantically
equivalent results (a question left open in previous work). All results are formalized and proved in the
Isabelle theorem-prover.

1 Introduction

Dozens of tools, including Simulink1, the most widespread embedded system design environment, are based
on hierarchical block diagrams (HBDs). Being a graphical notation (and in the case of Simulink a “closed”
one in the sense that the tool is not open-source), such diagrams need to be translated into other formalisms
more amenable to formal analysis. Several such translations exist, e.g., see [3, 39, 27, 42, 35, 10, 43, 44, 45, 29]
and related discussion in §2. To our knowledge, none of these translations has been formally verified. This
paper aims to remedy this fact.

This work is part of a larger project, the Refinement Calculus of Reactive Systems (RCRS) – see [16, 31,
33, 41] and http://rcrs.cs.aalto.fi/. RCRS is a compositional framework for modeling and reasoning
about reactive systems. It allows to capture systems which can be both non-deterministic and non-input-
receptive, and offers compositional refinement and other features for modular specification and verification.
RCRS comes with a toolset [16] which includes a full implementation of the RCRS theory and related analysis
tools on top of the Isabelle theorem prover [30], and a Translator of Simulink diagrams to RCRS theories.

The Translator, first described in [14], implements three translation strategies from HBDs to an algebra
of components with three basic composition operators: serial, parallel, and feedback. The several translation
strategies are motivated by the fact that each strategy has its own pros and cons. For instance, one strategy
may result in shorter and/or easier to understand algebra terms, while another strategy may result in terms
that are easier to simplify by manipulating formulas in a theorem prover. But a fundamental question is left
open in [14]: are these translation strategies semantically equivalent, meaning, do they produce semantically
equivalent terms? This is the question we study and answer (positively) in this paper.

1http://www.mathworks.com/products/simulink/
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The question is non-trivial, as we seek to prove the equivalence of three complex algorithms which
manipulate a graphical notation (hierarchical block diagrams) and transform models in this notation into a
different textual language, namely, the algebra mentioned above. Terms in this algebra have intricate formal
semantics, and formally proving that two given specific terms are equivalent is already a non-trivial exercise.
Here, the problem is to prove that a number of translation strategies T1, T2, ..., Tk are equivalent, meaning
that for any given graphical diagram D, the terms resulting from translating D by applying these strategies,
T1(D), T2(D), ..., Tk(D), are all semantically equivalent.

This equivalence question is important for many reasons. Just like a compiler has many choices when
generating code, a HBD translator has many choices when generating algebraic expressions. Just like a
correct compiler must guarantee that all possible results are equivalent (independently of optimization or
other flags/options), the translator must also guarantee that all possible algebraic expressions are equivalent.
Moreover, the algebraic expressions constitute the formal semantics of HBDs, and hence also those of tools
like Simulink. Therefore, this determinacy principle is also necessary in order for the formal Simulink
semantics to be well-defined.

In order to formulate the equivalence question precisely, we introduce an abstract and nondeterministic
algorithm for translating HBDs into an abstract algebra of components with three composition operations
(serial, parallel, feedback) and three constants (split, switch, and sink). By abstract algorithm we under-
stand an algorithm that produces terms in this abstract algebra. Concrete versions for this algorithm are
obtained when using it for concrete models of the algebra (e.g., constructive functions). The algorithm is
nondeterministic in the sense that it consists of a set of basic operations (transformations) that can be
applied in any order. This allows to capture various deterministic translation strategies as determinizations
(refinements [5]) of the abstract algorithm.

The main contributions of the paper are the following:

1. We formally and mechanically define a translation algorithm for HBDs.

2. We prove that despite its internal nondeterminism, the algorithm achieves deterministic results in the
sense that all possible algebra terms that can be generated by the different nondeterministic choices
are semantically equivalent.

3. We formalize two translation strategies introduced in [14] as refinements of the abstract algorithm.

4. We formalize also the third strategy (feedbackless) introduced in [14] as an independent algorithm.

5. We prove the equivalence of these three translation strategies.

To our knowledge, our work constitutes the first and only mechanically proven hierarchical block diagram
translator.

We remark that our translation is compositional [14]. We also remark that our abstract algorithm can
be instantiated in many different ways, encompassing not just the three translation strategies of [14], but
also any other HBD translation strategy that can be devised by combining the basic composition operations
defined in the abstract algorithm. As a consequence, our results imply not just the equivalence of the
translation strategies of [14], but also the equivalence of any other translation strategy that could be devised
as stated above. More generally, any translation of a graphical formalism into expressions in some language
would have to deal with problems similar to those tackled in this paper, and our work offers an example of
how to address these problems in a formal manner.

The entire RCRS framework, including all results in this paper, have been formalized and proved in
the Isabelle theorem prover [30] and are part of the RCRS toolset which is publicly available in a figshare
repository [17]. The theories relevant to this paper are under RCRS/Isabelle/TranslateHBD. The RCRS
toolset can be downloaded also from the RCRS web page: http://rcrs.cs.aalto.fi/.
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2 Related Work

Model transformation and the verification of its correctness is a long standing line of research, which in-
cludes classification of model transformations [4] and the properties they must satisfy with respect to their
intent [25], verification techniques [1], frameworks for specifying model transformations (e.g., ATL [18]), and
various implementations for specific source and target meta-models. Extensive surveys of the above can be
found in [4, 9, 1].

Several translations from Simulink have been proposed in the literature, including to Hybrid Automata [3],
BIP [39], NuSMV [27], Lustre [42], Boogie [35], Timed Interval Calculus [10], Function Blocks [43], I/O
Extended Finite Automata [44], Hybrid CSP [45], and SpaceEx [29]. It is unclear to what extent these
approaches provide formal guarantees on the determinism of the translation. For example, the order in
which blocks in the Simulink diagram are processed might a-priori influence the result. Some works fix this
order, e.g., [35] computes the control flow graph and translates the model according to this computed order.
In contrast, we prove that the results of our algorithm are equivalent for any order. To the best of our
knowledge, the abstract translation proposed hereafter for Simulink is the only one formally defined and
mechanically proven correct.

The focus of several works is to validate the preservation of the semantics of the original diagram by the
resulting translation (e.g., see [43, 36, 8, 37]). In contrast, our goal is to prove equivalence of all possible
translations. Given that Simulink semantics is informal (“what the simulator does”), ultimately the only way
to gain confidence that the translation conforms to the original Simulink model is by simulation (e.g., as
in [14]).

The work of [2] presents a correspondence between formulas and proofs in linear logic [20] and types and
computations in process calculi [23, 28]. A sequent in the logic (⊢ A,C⊥, B) is interpreted as an interface
specification for a concurrent process and how this process is connected to the environment. In this example
A and B are inputs to the process and C⊥ is output. In our approach we connect components by naming
their inputs and outputs, and an output is connected to an input if they have the same name.

With respect to the target algebra of our translation, the most relevant related works are the algebra
of flownomials [40] and the relational model for non-deterministic dataflow [21]. A comparison with these
works is presented in Section 5.

In [11], graphs and graph operations are represented by algebraic expressions and operations, and a
complete equational axiomatization of the equivalence of the graph expressions is given. This is then applied
to flow-charts as investigated in [38].

To our knowledge, none of the theoretical works on flownomials, nor graph represented as expressions,
nor the more practical works on translating HBDs/Simulink, are mechanically formalized or verified.

3 Preliminaries

For a type or set X , X∗ is the type of finite lists with elements from X . We denote the empty list by ǫ,
(x1, . . . , xn) denotes the list with elements x1, . . . , xn, and for lists x and y, x ·y denotes their concatenation.
The length of a list x is denoted by |x|. The list of common elements of x and y in the order occurring in
x is denoted by x ⊗ y. The list of elements from x that do not occur in y is denoted by x ⊖ y. We define
x ⊕ y = x · (y ⊖ x), the list of x concatenated with the elements of y not occurring in x. A list x is a
permutation of a list y, denoted perm(x, y), if x contains all elements of y (including multiplicities) possibly
in a different order. For a list x, set(x) denotes the set of all elements of x.

3.1 Constructive Functions

We introduce in this section the constructive functions as used in the constructive semantics literature [26,
7, 19]. They will provide a concrete model for the abstract algebra of HBDs, introduced in Section 5. These
functions are also used in the example from Section 4.

3



We assume that ⊥ is a new element called unknown, and that ⊥ is not an element of other sets that we
use. For a set A we define A⊥ = A ∪ {⊥}, and on A⊥ we introduce the pointed complete partial order (cpo)
[12] by (a ≤ b) ⇐⇒ (a = ⊥∨ a = b). We extend the order on A⊥ to the Cartesian product A⊥

1 × · · ·A⊥
n by

(x1, . . . , xn) ≤ (y1, . . . , yn) ⇐⇒ (∀1 ≤ i ≤ n : xi ≤ yi).
Constructive functions are the monotonic functions f : A⊥

1 × . . .×A⊥
n → B⊥

1 × . . .×B⊥
m, i.e., (∀x, y : x ≤

y ⇒ f(x) ≤ f(y)). We denote these functions by A1 · · ·An
c

−→ B1 · · ·Bm (f : A1 · . . . · An
c

−→ B1 · . . . · Bm

for f : A⊥
1 × . . .×A⊥

n → B⊥
1 × . . .×B⊥

m). Id : A
c

−→ A denotes the identity function on A: ∀x : Id(x) = x.

For constructive functions f : A
c

−→ B and g : B
c

−→ C, their serial composition g ◦ f is the normal
function composition (g ◦ f)(x) = g(f(x)). The parallel composition of f : A

c
−→ B and g : A′ c

−→ B′ is

denoted f ‖ g : A · A′ c
−→ B · B′ and is defined by (f ‖ g)(x, y) = (f(x), g(y)). We assume that parallel

composition operator binds stronger than serial composition, i.e. f ‖ g ◦ h is the same as (f ‖ g) ◦ h.

For a constructive function f : A
c

−→ A, its least fixpoint always exists [12], and we use it to define a

feedback composition. If f : A · B
c

−→ A · B′ is a constructive function, then its feedback (on A), denoted

feedback(f) : B
c

−→ B′, is defined by

feedback(f)(y) = f(µ x : f1(x, y), y)

where f1 : A · B
c

−→ A is the first component of f and (µ x : f1(x, y)) is the least fixpoint of the function
that, for fixed y, maps x into f1(x, y).

Let x1, . . . , xn be variables ranging over types A1, . . . , An, and e1, . . . , em expressions using basic opera-
tions (+,−,. . .) on these variables, ranging over types B1, . . . , Bm. We define the constructive function

[x1, . . . , xn ; e1, . . . , em] : A1 · · ·An
c

−→ B1 · · ·Bn

as the function that maps (x1, . . . , xn) ∈ A⊥
1 × . . . × A⊥

n into (e1, . . . , em), where the basic operations are
extended to unknown values in a standard way (e.g. 3 +⊥ = ⊥, ⊥ · 0 = 0).

3.2 Refinement Calculus and Hoare Total Correctness Triples

We model the (nondeterministic) algorithms using monotonic predicate transformers [13] within the refine-
ment calculus [5].

We assume a state space Σ. A state σ ∈ Σ gives values to all program variables. Programs are modeled
as monotonic predicate transformers on Σ, that is monotonic functions from predicates to predicates ((Σ →
bool) → (Σ → bool)) with a weakest precondition interpretation. For P : (Σ → bool) → (Σ → bool) and a
post condition q : Σ → bool, P (q) is the predicate that is true for the initial states from which the execution
of the program modeled by P always terminates, and it terminates in a state from q. In the rest of the
paper we refer to monotonic elements of (Σ → bool) → (Σ → bool) as programs. The program statements
are modeled as operations on monotonic predicate transformers.

For predicates (Σ → bool), we use the notations ∪, ∩, ¬, and ⊆ for the union, intersection, complement,
and subset operations, respectively.

The nondeterministic assignment statement, denoted [x := x′ | p(y, x′) ], assigns a new value x′ to
variable x such that the property p(y, x′) is true. In p(y, x′), variable y stands for the current value (before
the assignement) of y used for updating varible x. We can choose y = x, to refer to the current value of
variable x. For example [x := x′ | x′ > x + 1 ] assigns to x a new value greater that the current value of
x+ 1.

Formally, the nondeterministic assignment statement is defined by:

[x := x′ | p(y, x′) ](q)(σ) = (∀x′ : p(σ(y), x′) ⇒ q(σ[x := x′]))

where σ(y) is the value of variable y in state σ, and σ[x := x′] is a new state obtained from σ by changing
the value of x to x′.

The standard assignment statement x := e is defined as [x := x′ | x′ = e], where x′ is a new name.
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For a predicate p : Σ → bool, the assert statement, denoted {p}, starting from a state σ behaves as skip
if p(σ) is true, and it fails otherwise. By fail we mean a program that runs forever.

{p}(q) = p ∩ q

The sequential composition of programs P, P ′, denoted P ; P ′ is the function composition of predicate
transformers:

(P ; P ′)(q) = P (P ′(q)).

The nondeterministic choice of P and P ′, denoted P ⊓ P ′, is the pointwise extension of the intersection
on predicates to predicate transformers:

(P ⊓ P ′)(q) = P (q) ∩ P ′(Q).

For a predicate b and programs P and P ′, the if statement, denoted if b then P else P ′ is defined by

if b then P else P ′ = ({b} ; P ) ⊔ ({¬b} ; P ′)

where ⊔ is the pointwise extension of union on predicates to predicate transformers ((P ⊔ P ′)(q) = P (q) ∪
P ′(q)).

For predicate b and program P , the while statement, denoted while b do P , is defined as a least fixpoint:

while b do P = (µX : if b then P ; X else skip)

where skip is the program that does not change the state, modeled as the identity predicate transformer, and
(µX : if b then P ; X else skip) is the least fixpoint of the function mapping X into if b then P ; X else skip.
The fixpoint always exists because of the monotonicity assumption.

The refinement relation of programs, denoted P ⊑ P ′, is again the pointwise extension of the inclusion
order on predicates to predicate transformers:

(P ⊑ P ′) = (∀q : P (q) ⊆ P ′(q)).

If a program P ′ is a refinement of another program P , (P ⊑ P ′), then we can use P ′ in every context where
we can use P . In a refinement P ⊑ P ′, the program P ′ is more deterministic than P , and it fails for less
input states. For example we have the following refinement:

{x > 10} ; [x := x′ | x′ = 1 ∨ x′ = 2 ∨ x′ = 3] ⊑ {x > 0} ; [x := x′ | x′ = 1 ∨ x′ = 3]

In this example, the second program fails for less states x > 0 as opposed to x > 10, and it is more
deterministic. The second program can assign to x only the values 1 and 3, while the first program can
assign also value 2.

Finally we introduce Hoare [22] total correctness triples for programs. If p is a precondition predicate on
states, q is a postcondition predicate on states, and P is a program, then the Hoare total correctness triple
p {|P |} q is defined by

(p {|P |} q) = (p ⊆ P (q)).

The interpretation of the triple p {|P |} q is the following. If the program P starts from a state σ satisfying
the precondition p, then P always terminates, and it terminates into a state satisfying the postcondition q.

In general, the correctness of a program is stated as a Hoare triple, and it is proved by reducing this
correctness problem to smaller and smaller programs using Hoare rules. As examples we give here two Hoare
rules for the correctness of the nondeterministic assignment and while statements.2

2We omit several of the proofs of the results presented in this paper. These proofs and additional material used in the
formalization and verification of our algorithms can be found in our Isabelle formalization [17].
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Add Delay •

(a) Original block diagram

Add
x

Delay
y

Split
z

u v

(b) Naming wires and adding Split block

Add
x

Delay

y
Split

z
u v

s s′

(c) Adding state variables

Add
x

Id

u
z

Delay

y

s′s

A

(d) One step of the algorithm

Figure 1: Running example: diagram for summation.

Lemma 1 (Hoare rule for the nondeterministic assignment). If p, q are predicates on state and b is a predicate
on y, x′ such that

(∀σ, x′ : p(σ) ∧ b(σ(y), x′) ⇒ q(σ[x := x′]))

then
(p {| [x := x′ | b(y, x′) ] |} q).

Lemma 2 (Hoare rule for while). If p, q, b, I are predicates on state, t : Σ → nat is a function from state to
natural numbers, and P is a program such that

(∀n : (I ∧ t = n) {|P |} (I ∧ t < n)) and (p ⊆ I) and (¬b ∩ I ⊆ q)

then
(p {| while b do P |} q)

In this lemma I is called the invariant and its role is to ensure the correctness of the while program based
on the correctness of the body (P ). The function (term) t is called the variant and it is used to ensure the
termination of the while program for all possible input states satisfying p.

There is an important relationship between Hoare rules and refinement, expressed by the next lemma.

Lemma 3. If P, P ′ are programs, then

P ⊑ P ′ ⇔ (∀p, q : (p {| P |} q) ⇒ (p {| P ′ |} q))

4 Overview of the Translation Algorithm

A block diagram N is a network of interconnected blocks. A block may be a basic (atomic) block, or a
composite block that corresponds to a sub-diagram. If N contains composite blocks then it is called a
hierarchical block diagram (HBD); otherwise it is called flat. An example of a flat diagram is shown in
Figure 1a. The connections between blocks are called wires, and they have a source block and a target block.
For simplicity, we will assume that every wire has a single source and a single target. This can be achieved
by adding extra blocks. For instance, the diagram of Figure 1a can be transformed as in Figure 1b by adding
an explicit block called Split.

Let us explain the idea of the translation algorithm. We first explain the idea for flat diagrams, and then
we extend it recursively for hierarchical diagrams.

A diagram is represented in the algorithm as a list of elements corresponding to the basic blocks. One
element of this list is a triple containing a list of input variables, a list of output variables, and a function.

6



The function computes the values of the outputs based on the values of the inputs, and for now it can be
thought of as a constructive function. Later this function will be an element of an abstract algebra modeling
HBDs. Wires are represented by matching input/output variables from the block representations.

A block diagram may contain stateful blocks such as delays or integrators. We model these blocks using
additional state variables (wires). In Figure 1, the only stateful block is the block Delay. We model this
block as an element with two inputs (x, s), two outputs (y, s′) and function (y, s′) := (s, x) (Figure 1c). More
details about this representation can be found in [14].

In summary, the list representation of the example of Figure 1 is the following:
(

Add,Delay, Split
)

where

Add = ((z, u), x, [z, u ; z + u])

Delay = ((x, s), (y, s′), [x, s ; s, x])

Split = (y, (z, v), [y ; y, y])

The algorithm works by choosing nondeterministically some elements from the list and replacing them
with their appropriate composition (serial, parallel, or feedback). The composition must connect all the
matching variables. Let us illustrate how the algorithm may proceed on the example of Figure 1; for the full
description of the algorithm see Section 6.

Suppose the algorithm first chooses to compose Add and Delay. The only matching variable in this case is
x, between the output of Add and the first input of Delay. The appropriate composition to use here is serial
composition. Because Delay also has s as input, Add and Delay cannot be directly connected in series. This
is due to the number of outputs of Add that need to match the number of inputs of Delay. To compute the
serial composition, Add must first be composed in parallel with the identity block Id, as shown in Figure 1d.
Doing so, a new element A is created:

A = ((z, u, s), (y, s′), Delay ◦ (Add ‖ Id)).

Next, A is composed with Split. In this case we need to connect variable y (using serial composition), as well
as z (using feedback composition). The resulting element is

(

(u, s), (v, s′), feedback
(

(Split ‖ Id) ◦ Delay ◦ (Add ‖ Id)
)

)

where we need again to add the Id component for variable s′.
Suppose now that the algorithm chooses to compose first the blocks Split and Add (Fig. 2a) into B.

B = ((y, u), (x, v), (Add ‖ Id) ◦ (Id ‖ [v, u ; u, v]) ◦ (Split ‖ Id))

In this composition, in addition to the Id components, we need now also a switch ([v, u ; u, v]) for wires v

and u. Next the algorithm composes B and Delay (Fig. 2b):
(

(u, s), (s′, v), feedback
(

(Delay ‖ Id) ◦ (Id ‖ [v, s ; s, v]) ◦ (B ‖ Id)
)

)

As we can see from this example, by considering the blocks in the diagram in different orders, we obtain
different expressions. On this example, the first expression is simpler (it has less connectors) than the second
one. In general, a diagram, being a graph, does not have a predefined canonical order, and we need to show
that the result of the algorithm is the same regardless of the order in which the blocks are considered.

We make two remarks here. First, the final result of the algorithm is a triple with the same structure as
all elements on the original list: (input variables, output variables, function), where the function represents
the computation performed by the entire diagram. Therefore, the algorithm can be applied recursively on
HBDs.

Second, the variables in the representation occur at most twice, once as input, and once as output. The
variables occurring only as inputs are the inputs of the resulting final element, and variables occurring only
as outputs are the outputs of the resulting final element. This is true in general for all diagrams, due to the
representation of splitting of wires. This fact is essential for the correctness of the algorithm as we will see
in Section 6.
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Split Add

z

x

v

y

u

B

(a) First step: composing Split and Add

B Delay

x

s′

v

u

s

y

(b) Second step: composing B and Delay

Figure 2: A different composition order for the example from Fig. 1.

5 An Abstract Algebra for Hierarchical Block Diagrams

We assume that we have a set of Types. We also assume a set of diagrams Dgr. Every element S ∈ Dgr has
input type t ∈ Types∗ and output type t′ ∈ Types∗. If t = t1 · · · tn and t′ = t′1 · · · t

′
m, then S takes as input

a tuple of the type t1 × . . . × tn and produces as output a tuple of the type t′1 × . . . × t′m. We denote the

fact that S has input type t ∈ Types∗ and output type t′ ∈ Types∗ by S : t
◦

−→ t′. The elements of Dgr are
abstract.

5.1 Operations of the Algebra of HBDs

Constants. Basic blocks are modeled as constants on Dgr. For types t, t′ ∈ Types∗ we assume the following
constants:

Id(t) : t
◦

−→ t

Split(t) : t
◦

−→ t · t

Sink(t) : t
◦

−→ ǫ

Switch(t, t′) : t · t′
◦

−→ t′ · t

Id corresponds to the identity block. It copies the input into the output. In the model of constructive
functions Id(t) is the identity function. Split(t) takes an input x of type t and outputs x · x of type t · t.
Sink(t) returns the empty tuple ǫ, for any input x of type t. Switch(t, t′) takes an input x ·x′ with x of type t

and x′ of type t′ and returns x′ ·x. In the model of constructive functions these diagrams are total functions
and they are defined as explained above. In the abstract model, the behaviors of these constants is defined
with a set of axioms (see below).

Composition operators. For two diagrams S : t
◦

−→ t′ and S′ : t′
◦

−→ t′′, their serial composition,
denoted S ; S′ : t

◦
−→ t′′ is a diagram that takes inputs of type t and produces outputs of type t′′. In the

model of constructive functions, the serial composition corresponds to function composition (S ; S′ = S′◦S).
Please note that in the abstract model we write the serial composition as S ; S′, while in the model of
constructive functions the first diagram that is applied to the input occurs second in the composition.

The parallel composition of two diagrams S : t
◦

−→ t′ and S′ : r
◦

−→ r′, denoted S ‖ S′ : t · r
◦

−→ t′ · r′, is
a diagram that takes as input tuples of type t · r and produces as output tuples of type t′ · r′. This parallel
composition corresponds to the parallel composition of constructive functions.

Finally we introduce a feedback composition. For S : a · t
◦

−→ a · t′, where a ∈ Types is a single type, the
feedback of S, denoted feedback(S) : t

◦
−→ t′, is the result of connecting in feedback the first output of S to

its first input. Again this feedback operation corresponds to the feedback of constructive functions.
We assume that parallel composition operator binds stronger than serial composition, i.e. S ‖ T ; R is

the same as (S ‖ T ) ; R.
Graphical diagrams can be represented as terms in the abstract algebra, as illustrated in Figure 3. This

figure depicts two diagrams, and their corresponding algebra terms. As it turns out, these two diagrams are
equivalent, in the sense that their corresponding algebra terms can be shown to be equal using the axioms
presented below.
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S T S T

feedback(Id(a) ‖ S ; Switch(a, a) ‖ Id(t) ; Id(a) ‖ T ) S ; T=

Figure 3: Two flat diagrams and their corresponding terms in the abstract algebra.

5.2 Axioms of the Algebra of HBDs

In the abstract algebra, the behavior of the constants and composition operators is defined by a set of axioms,
listed below:

1. S : t
◦

−→ t′ =⇒ Id(t) ; S = S ; Id(t′) = S

2. S : t1
◦

−→ t2 ∧ T : t2
◦

−→ t3 ∧R : t3
◦

−→ t4 =⇒ S ; (T ; R) = (S ; T ) ; R

3. Id(ǫ) ‖ S = S ‖ Id(ǫ) = S

4. S ‖ (T ‖R) = (S ‖ T ) ‖R

5. S : s
◦

−→ s′ ∧ S′ : s′
◦

−→ s′′ ∧ T : t
◦

−→ t′ ∧ T ′ : t′
◦

−→ t′′

=⇒ (S ‖ T ) ; (S′ ‖ T ′) = (S ; S′) ‖ (T ; T ′)

6. Split(t) ; Sink(t) ‖ Id(t) = Id(t)

7. Split(t) ; Switch(t, t) = Split(t)

8. Split(t) ; Id(t) ‖ Split(t) = Split(t) ; Split(t) ‖ Id(t)

9. Switch(t, t′ · t′′) = Switch(t, t′) ‖ Id(t′′) ; Id(t′) ‖ Switch(t, t′′)

10. Sink(t · t′) = Sink(t) ‖ Sink(t′)

11. Split(t · t′) = Split(t) ‖ Split(t′) ; Id(t) ‖ Switch(t, t′) ‖ Id(t′)

12. S : s
◦

−→ s′ ∧ T : t
◦

−→ t′ =⇒ Switch(s, t) ; T ‖ S ; Switch(t′, s′) = S ‖ T

13. feedback(Switch(a, a)) = Id(a)

14. S : a · s
◦

−→ a · t =⇒ feedback(S ‖ T ) = feedback(S) ‖ T

15. S : a · s
◦

−→ a · t ∧ A : s′
◦

−→ s ∧B : t
◦

−→ t′

=⇒ feedback(Id(a) ‖A ; S ; Id(a) ‖B) = A ; feedback(S) ; B

16. S : a · b · s
◦

−→ a · b · t
=⇒ feedback2(Switch(b, a) ‖ Id(s) ; S ; Switch(a, b) ‖ Id(t)) = feedback2(S)

9
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Figure 5: Axiom (11) Split switch.

Axioms (1) and (2) express the fact that the identity is the neutral element for the serial composition, and
the serial composition is associative. Similarly, axioms (3) and (4) state that the identity of the empty type
is the neutral element for the parallel composition, and that parallel composition is associative.

Axiom (5) introduces a distributivity property of serial and parallel compositions. Figure 4 represents
graphically this axiom.

Axioms (6) – (11) express the properties of Split, Sink, and Switch. For example Axiom (11), represented
in Figure 5, says that if we duplicate x ·y of type t · t′, then this is equivalent to duplicate x and y in parallel,
and then switch the middle x and y.

Axiom (12) says that switching the inputs and outputs of T ‖ S is equal to S ‖ T .
Axioms (13) – (16) are about the feedback operator. Axiom (13), represented in Figure 6, states that

feedback of switch is the identity. Axiom (14), represented in Figure 7, states that feedback of the parallel
composition of S and T is the same as the parallel composition of the feedback of S and T . Axiom (15),
Figure 8, states that components A and B can be taken out of the feedback operation. Finally, Axiom (16)
represented in Figure 9, states that the order in which we apply the feedback operations does not change
the result.

These axioms are equivalent to a subset of the axioms of algebra of flownomials [40], which implies that all
models of flownomials are also models of our algebra. In [21], a relational model for dataflow is introduced.
This model is also based on a set of axioms on feedback, serial and parallel compositions, but [21] does not
use the split constant. Our axioms that are not involving split are equivalent to the axioms used in [21].
The focus of [21] is the construction of a relational model for the axioms.

The following theorem provides a concrete semantic domain for HBDs.

Theorem 1. Constructive functions with the operations defined in Section 3 are a model for axioms (1) –
(16).

We remark that constructive functions are only one example of a model for axioms (1) – (16), and by
no means the only model. As mentioned above, all models of flownomials are also models of our algebra. In
particular, relations are a model of flownomials and therefore also a model for axioms (1) – (16) [40].

vu
= u v

Figure 6: Axiom (13) Feedback of switch.
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6 The Abstract Translation Algorithm and its Determinacy

6.1 Diagrams with Named Inputs and Outputs

The algorithm works by first transforming the graph of a HBD into a list of basic components with named
inputs and outputs as explained in Section 4. For this purpose we assume a set of names or variables Var

and a function T : Var → Types. For v ∈ Var, T(v) is the type of variable v. We extend T to lists of variables
by T(v1, . . . , vn) = (T (v1), . . . , T (vn)).

Definition 1. A diagram with named inputs and outputs or io-diagram for short is a tuple (in , out , S) such

that in, out ∈ Var∗ are lists of distinct variables, and S : T(in)
◦

−→ T(out).

In what follows we use the symbols A,A′, B, . . . to denote io-diagrams, and I(A), O(A), and D(A) to
denote the input variables, the output variables, and the diagram of A, respectively.

Definition 2. For io-diagrams A and B, we define V(A,B) = O(A)⊗ I(B) ∈ Var∗.

V(A,B) is the list of common variables that are output of A and input of B, in the order occurring in
O(A). We use V(A,B) later to connect for example in series A and B on these common variables, as we did
for constructing A from Add and Delay in Section 4.

6.2 General Switch Diagrams

We compose diagrams when their types are matching, and we compose io-diagrams based on matching
names of input output variables. For example if we have two io-diagrams A and B with O(A) = u · v and
I(B) = v ·u, then we can compose in series A and B by switching the output of A and feeding it into B, i.e.,
(A ; Switch(T(u),T(v)) ; B).

In general, for two lists of variables x = (x1 · · ·xn) and y = (y1 · · · yk) we define a general switch diagram

[x1 · · ·xn ; y1 · · · yk] : T(x1 · · ·xn)
◦

−→ T(y1 · · · yk). Intuitively this diagram takes as input a list of values
of type T(x1 · · ·xn) and outputs a list of values of type T(y1 · · · yk), where the output value corresponding

S = S

Figure 9: Axiom (16) Feedback of switched inputs/outputs.
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Figure 10: The diagram Arb.

to variable yj is equal to the value corresponding to the first xi with xi = yj and it is arbitrary (unknown)
if there is no such xi. For example in the constructive functions model [u, v ; v, u, w, u] for input (a, b)
outputs (b, a,⊥, a).

To define [_ ; _] we use Split, Sink, and Switch, but we need also an additional diagram that outputs

an arbitrary (or unknown) value for an empty input. For a ∈ Types, we define Arb(a) : ǫ
◦

−→ a by

Arb(a) = feedback(Split(a))

The diagram Arb is represented in Figure 10.
We define now [x ; y] : T(x)

◦
−→ T(y) in two steps. First for x ∈ Var∗ and u ∈ Var, the diagram

[x ; u] : T(x)
◦

−→ T(u), for input a1, . . . , an it outputs the value ai where i is the first index such that
xi = u. Otherwise it outputs an arbitrary (unknown) value.

[ǫ ; u] = Arb(T(u))

[u · x ; u] = Id(T(u)) ‖ Sink(T(x))

[v · x ; u] = Sink(T(v)) ‖ [x ; u] (if u 6= v)

and
[x ; ǫ] = Sink(T(x))

[x ; u · y] = Split(T(x)) ; ([x ; u] ‖ [x ; y])

6.3 Basic Operations of the Abstract Translation Algorithm

The algorithm starts with a list of io-diagrams and repeatedly applies operations until it reduces the list to
only one io-diagram. These operations are the extensions of serial, parallel and feedback from diagrams to
io-diagrams.

Definition 3. The named serial composition of two io-diagrams A and B, denoted A ; ; B is defined by
A ; ; B = (in , out , S), where x = I(B)⊖ V(A,B), y = O(A) ⊖ V(A,B), in = I(A)⊕ x, out = y ·O(B) and

S = [in ; I(A) · x] ; D(A) ‖ [x ; x] ; [O(A) · x ; y · I(B)] ; [y ; y] ‖ D(B)

The construction of A from Section 4 can be obtained by applying the named serial composition to Add

and Delay.
Figure 11 illustrates an example of the named serial composition. In this case we have V(A,B) = u,

x = (a, b), y = (v, w), in = (a, c, b), and out = (v, w, d, e). The component A has outputs u, v, w, and u is
also input of B. Variable u is the only variable that is output of A and input of B. Because the outputs
v, w of A are not inputs of B they become outputs of A ; ; B. Variable a is input for both A and B, so in
A ; ; B the value of a is split and fed into both A and B. The diagram for this example is:

[a, c, b ; a, c, a, b] ; A ‖ Id(T(a, b)) ; [u, v, w, a, b ; v, w, a, u, b] ; Id(T(v, w)) ‖B.

The result of the named serial composition of two io-diagrams is not always an io-diagram. The problem
is that the outputs of A ; ; B are not distinct in general. The next lemma gives sufficient conditions for
A ; ; B to be an io-diagram.

Lemma 4. If A,B are io-diagrams and (O(A)⊖I(B))⊗O(B) = ǫ then A ; ; B is an io-diagram. In particular
if O(A)⊗ O(B) = ǫ then A ; ; B is an io-diagram.

12
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Figure 12: Example of named parallel composition.

The named serial composition is associative, expressed by the next lemma.

Lemma 5. If A,B,C are io-diagrams such that (O(A) ⊖ I(B)) ⊗ O(B) = ǫ and (O(A) ⊗ I(B)) ⊗ I(C) = ǫ

then
(A ; ; B) ; ; C = A ; ; (B ; ; C)

Next we introduce the corresponding operation on io-diagrams for the parallel composition.

Definition 4. If A,B are io-diagrams, then the named parallel composition of A and B, denoted A |||B is
defined by

A |||B = (I(A) ⊕ I(B),O(A) ·O(B), S)

where
S = [I(A)⊕ I(B) ; I(A) · I(B)] ; (A ‖B)

Figure 12 presents an example of a named parallel composition. The named parallel composition is
meaningful only if the outputs of the two diagrams have different names. However, the inputs may not
necessarily be distinct as shown in Figure 12.

As in the case of named serial composition, the parallel composition of two io-diagrams is not always an
io-diagram. Next lemma gives conditions for the parallel composition to be io-diagram and also states that
the named parallel composition is associative.

Lemma 6. Let A, B, and C be io-diagrams, then

1. O(A)⊗ O(B) = ǫ ⇒ A |||B is an io-diagram.

2. (A |||B) |||C = A ||| (B |||C)

Next definition introduces the feedback operator for io-diagrams.

Definition 5. If A is an io-diagram, then the named feedback of A, denoted FB(A) is defined by (in , out , S),
where in = I(A) ⊖ V(A,A), out = O(A)⊖ V(A,A) and

S = feedback|V(A,A)|([V(A,A) · in ; I(A)] ; S ; [O(A) ; V(A,A) · out ])
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Figure 13: Example of named feedback composition.

The named feedback operation of A connects all inputs and outputs of A with the same name in feedback.
Figure 13 illustrates an example of named feedback composition. The named feedback applied to an io-
diagram is always an io-diagram.

Lemma 7. If A is an io-diagram then FB(A) is an io-diagram.

6.4 The Abstract Translation Algorithm

We have now all elements for introducing the abstract translation algorithm. The algorithm starts with a
list A = (A1, A2, . . . , An) of io-diagrams, such that for all i 6= j, the inputs and outputs of Ai and Aj are
disjoint respectively (I(Ai)⊗ I(Aj) = ǫ and O(Ai)⊗O(Aj) = ǫ). We denote this property by io−distinct(A).
The algorithm is given in Alg. 1. Formally the algorithm is represented as a monotonic predicate transformer
[13], within the framework of refinement calculus [5].

input: A = (A1, A2, . . . , An) (list of io-diagrams)

while |A| > 1 :

choose:

(a) [A := A′ | ∃ k,B1, . . . , Bk, C : k > 1 ∧ perm(A, (B1, . . . , Bk) · C)

∧ A′ = FB(B1 ||| . . . |||Bk) · C ]

(b) [A := A′ | ∃ A,B, C : perm(A, (A,B) · C) ∧ A′ = FB(FB(A) ; ; FB(B)) · C ]

A := FB(A′) (where A′ is the only remaining element of A)

Alg. 1: Nondeterministic algorithm for translating HBDs.

Computing FB(A) in the last step of the algorithm is necessary only if A contains initially only one
element. However, computing FB(A) always at the end does not change the result since, as we will see later
in Theorem 2, FB operation is idempotent, i.e. FB(FB(A)) = FB(A). In the presentation of the algorithm,
we have used the keyword choose for the nondeterministic choice ⊓, to emphasize the two alternatives.

Note that, semantically, choice (b) of the algorithm is a special case of choice (a), as shown later in
Theorem 2. But syntactically, choices (a) and (b) result in different expressions that achieve different
performance tradeoffs as observed in Section 4 and as further discussed in [14]. The point of our translator
is to be indeed able to generate semantically equivalent but syntactically different expressions, which achieve
different performance tradeoffs [14].

The result for the running example from Section 4 can be obtained by applying the second choice of the
algorithm twice for the initial list of io-diagrams ([Add,Delay, Split]), first to Add and Delay to obtain A, and
next to A and Split to obtain

(

(u, s), (v, s′), feedback
(

(D(Add) ‖ Id) ; D(Delay) ; ((Split) ‖ Id)
)

)

.
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As opposed to the example from Section 4, the elements are composed serially in the order occurring in the
diagram.

6.5 Determinacy of the Abstract Translation Algorithm

The result of the algorithm depends on how the nondeterministic choices are resolved. However, in all cases
the final io-diagrams are equivalent modulo a permutation of the inputs and outputs. To prove this, we
introduce the concept io-equivalence for two io-diagrams.

Definition 6. Two io-diagrams A,B are io-equivalent, denoted A ∼ B if they are equal modulo a per-
mutation of the inputs and outputs, i.e., I(B) is a permutation of I(A), O(B) is a permutation of O(A)
and

D(A) = [I(A) ; I(B)] ; D(B) ; [O(B) ; O(A)]

Lemma 8. The relation io-equivalent is a congruence relation, i.e, for all A,B,C io-diagrams we have:

1. A ∼ A

2. A ∼ B ⇒ B ∼ A

3. A ∼ B ∧B ∼ C ⇒ A ∼ C.

4. A ∼ B ⇒ FB(A) ∼ FB(B).

5. O(A)⊗ O(B) = ǫ ⇒ A |||B ∼ B |||A.

6. If io−distinct(A1, . . . , An) and perm((A1, . . . , An), (B1, . . . , Bn)) then

A1 ||| . . . An ∼ B1 ||| . . . Bn.

To prove correctness of the algorithm we also need the following results:

Theorem 2. If A,B are io-diagrams such that I(A)⊗ I(B) = ǫ and O(A)⊗ O(B) = ǫ then

FB(A |||B) = FB(FB(A) ; ; FB(B))

and
FB(FB(A)) = FB(A).

The proof of Theorem 2 is quite involved and requires several properties of diagrams (see the RCRS
formalization [17] for details).

We can now state and prove one of the main results of this paper, namely, determinacy of Algorithm 1.

Theorem 3. If A = (A1, A2, . . . , An) is the initial list of io-diagrams satisfying io−distinct(A), then
Algorithm 1 terminates, and if A is the io-diagram computed by the algorithm, then

A ∼ FB(A1 ||| . . . |||An)

Proof. It is easy to see that the algorithm terminates because at each step, the size of the list A decreases.
The termination variant in Lemma 2 is |A|, the length of list A.

To prove the correctness of the algorithm we use the Hoare rule for the while statement (Lemma 2), which
requires an invariant. The invariant must be true at the beginning of the while loop, it must be preserved
by the body of the while loop, and it must establish the final post-condition (A ∼ FB(A1 ||| . . . |||An)).
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If A0 = (A1, . . . , An) is the initial list of the io-diagrams, and A = (C1, . . . , Cm) is the current list of
io-diagrams, then the invariant is

inv(A) = io−distinct(A) ∧ FB(C1 ||| . . . |||Cm) ∼ FB(A1 ||| . . . |||An)

Initially inv(A) is trivially true, and it also trivially establishes the final post-condition. We need to prove
that both choices in the algorithm preserve the invariant.

inv(A) ∧ k > 1 ∧ perm(A, (B1, . . . , Bk) · C) ⇒ inv([FB(B1 ||| . . . |||Bk)] · C) (1)

and
inv(A) ∧ perm(A, (A,B) · C) ⇒ inv([FB(FB(A) ; ; FB(B))] · C) (2)

The properties (1) and (2) are obtained by applying the Hoare rule for the nondeterministic choice, and
then the rule for nondeterministic assignment (Lemma 1).

We prove (1). Assume

A = (C1, . . . , Cm) and inv(A) = io−distinct(A) ∧ FB(C1 ||| . . . |||Cm) ∼ FB(A1 ||| . . . |||An).

Let D1 = FB(B1 ||| . . . |||Bk), and C = (D2, . . . , Du). It follows that io−distinct(D1, . . . , Du). We prove now
that FB(D1 ||| . . . |||Du) ∼ FB(A1 ||| . . . |||An).

FB(D1 ||| . . . |||Du)

= {Theorem 2 and ||| is associative}

FB(FB(D1) ; ; FB(D2 ||| . . . |||Du))

= {Definition of D1}

FB(FB(FB(B1 ||| . . . |||Bk)) ; ; FB(D2 ||| . . . |||Du))

= {Theorem 2}

FB(FB(B1 ||| . . . |||Bk) ; ; FB(D2 ||| . . . |||Du))

= {Theorem 2 and ||| is associative}

FB(B1 ||| . . . |||Bk |||D2 ||| . . . |||Du)

∼ {Lemma 8 and perm((B1, . . . , Bk, D2, . . . , Du), (C1, . . . , Cm))}

FB(C1 ||| . . . |||Cm)

∼ {Assumptions}

FB(A1 ||| . . . |||An)

Property (2) can be reduced to property (1) by applying Theorem 2.
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7 Proving Equivalence of Two Translation Strategies

To demonstrate the usefulness of our framework, we return to our original motivation, namely, the open
problem of how to prove equivalence of the translation strategies introduced in [14]. Two of the translation
strategies of [14], called feedback-parallel and incremental translation, can be seen as a determinizations
(or refinements) of the abstract algorithm of Section 6, and therefore can be shown to be equivalent and
correct with respect to the abstract semantics. (The third strategy proposed in [14], called feedbackless, is
significantly different and is presented in the next section.)

The feedback-parallel strategy is the implementation of the abstract algorithm where we choose k = |A|.
Intuitively, all diagram components are put in parallel and the common inputs and outputs are connected
via feedback operators. On the running example from Figure 1c, this strategy will generate the following
component:

((u, s), (v, s′), feedback3([z, x, y, u, s ; z, u, x, s, y]

; D(Add) ‖ D(Delay) ‖ D(Split) ; [x, y, s′, z, v ; z, x, y, v, s′]))

The switches are ordering the variables such that the feedback variables are first and in the same order in
both input and output lists.

The incremental strategy is the implementation of the abstract algorithm where we use only the second
choice of the algorithm and the first two components of the list A. This strategy is dependent on the initial
order of A, and we order A topologically (based on the input - output connections) at the beginning, in
order to reduce the number of switches needed.

Again on the running example, assume that this strategy composes first Add with Delay, and the result
is composed with Split. The following component is then obtained:

((u, s), (v, s′), feedback(D(Add) ‖ Id ; D(Delay) ; D(Split) ‖ Id)

The Add and Split components are put in parallel with Id for the unconnected input and output state
respectively. Next all components are connected in series with one feedback operator for the variable z.

The next theorem shows that the two strategies are equivalent, and that they are independent of the
initial order of A.

Theorem 4. If A and B are the result of the feedback-parallel and incremental strategies on A, respectively,
then A and B are input - output equivalent (A ∼ B). Moreover both strategies are independent of the initial
order of A.

Proof. Both strategies are refinements of the nondeterministic algorithm. Therefore, using Lemma 3, they
satisfy the same correctness conditions (Theorem 3), i.e.

A ∼ FB(A1 ||| . . . |||An) and B ∼ FB(A1 ||| . . . |||An)

where A = (A1, . . . , An). From this, since ∼ is transitive and symmetric, we obtain A ∼ B.
For the second part, we use a similar reasoning. Let A = [A1, . . . , An], and B = [B1, . . . , Bn] a permuta-

tion of A. If A and B are the outputs of feedback-parallel on A and B, respectively, then we prove A ∼ B.
Using Theorem 3 again we have:

A ∼ FB(A1 ||| . . . |||An) and B ∼ FB(B1 ||| . . . |||Bn).

Moreover, because B is a permutation of A, using Lemma 8 we have

FB(A1 ||| . . . |||An) ∼ FB(B1 ||| . . . |||Bn).

Therefore A ∼ B. The same holds for the incremental strategy.
Since both strategies are refinements of the nondeterministic algorithm, they both satisfy the same

correctness conditions of Theorem 3.
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8 Proving Equivalence of A Third Translation Strategy

The abstract algorithm for translating HBDs, as well as the two translation strategies presented in Section
7, use the feedback operator when translating diagrams. As discussed in [14], expressions that contain
the feedback operator are more complex to process and simplify. For this reason, we wish to avoid using
the feedback operator as much as possible. Fortunately, in practice, diagrams such as those obtained from
Simulink are deterministic and algebraic loop free. As it turns out, such diagrams can be translated into
algebraic expressions that do not use the feedback operator at all [14]. This can be done using the third
translation strategy proposed in [14], called feedbackless.

While the two translation strategies presented in Section 7 can be modeled as refinements of the abstract
algorithm, the feedbackless strategy is significantly more complex, and cannot be captured as such a refine-
ment. We therefore treat it separately in this section. In particular, we formalize the feedbackless strategy
and we show that it is equivalent to the abstract algorithm, namely, that for the same input, the results of
the two algorithms are io-equivalent.

8.1 Deterministic and Algebraic-Loop-Free Diagrams

Before we introduce the feedbackless strategy, we need some additional definitions.

Definition 7. A diagram S is deterministic if

[x ; x, x] ; (S ‖ S) = S ; [y ; y, y].

An io-diagram A is deterministic if D(A) is deterministic.

The definition of deterministic diagram corresponds to the following intuition. If we execute two copies
of S in parallel using the same input value x, we should obtain the same result as executing one S for the
same input value x.

The deterministic property is closed under the serial, parallel, and switch operations of the HBD Algebra.

Lemma 9. If S, T ∈ Dgr are deterministic and x, y are list of variables such that x are distinct and
set(y) ⊆ set(x), then

1. [x ; y] is deterministic

2. S ; T is deterministic

3. S ‖ T is deterministic

It is not obvious whether we can deduce from the axioms that the deterministic property is closed under
the feedback operation. However, since we do not use the feedback operation in this algorithm, we don’t
need this property.

Definition 8. The output input dependency relation of an io-diagram A is defined by

oi_rel(A) = set(O(A)) × set(I(A))

and the output input dependency relation of a list A = [A1, . . . , An] of io-diagrams is defined by

oi_rel(A) = oi_rel(A1) ∪ . . . ∪ oi_rel(An)

A list A of io-diagrams is algebraic loop free, denoted loop_free(A), if

(∀x : (x, x) 6∈ (oi_rel(A))+)

where (oi_rel(A))+ is the reflexive and transitive closure of relation (oi_rel(A)).
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If we apply this directly to the list of io-diagrams from our example A = [Add,Delay, Split] we obtain

oi_rel(A) = {(x, u), (x, z), (y, x), (y, s), (s′, x), (s′, s), (z, y), (v, y)}

and we have that (z, z) ∈ (oi_rel(A))+ because (z, y), (y, x), (x, z) ∈ oi_rel(A), therefore A is not algebraic
loop free. However, the diagram from the example is accepted by Simulink, and it is considered algebraic loop
free. In our treatment oi_rel(A) contains pairs that do not represent genuine output input dependencies.
For example output y of Delay depends only on the input s, and it does not depend on x. Similarly, output
s′ of Delay depends only on x.

Before applying the feedbackless algorithm, we change the initial list of blocks into a new list such
that the output input dependencies are recorded more accurately, and all elements in the new list have
one single output. We split a basic block A into a list of blocks A1, . . . , An with single outputs such that
A ∼ A1 ||| . . . |||An. Basically every block with n outputs is split into n single output blocks.

We could do the splitting systematically by composing a block A with all projections of the output.
For example if A = (x, (u1, . . . , un), S), then we can split A into Ai = (x, ui, S ; [u1, . . . , un ; ui]). Such
splitting is always possible as shown in the following lemma:

Lemma 10. If A is deterministic, then A1, . . . , An is a splitting of A, i.e.

A ∼ A1 ||| . . . |||An.

However, this will still introduce unwanted output input dependencies. We solve this problem by defining
the splitting for every basic block, such that it accurately records the output input dependency. For example,
we split the delay block into Delay1 and Delay2:

Delay1 = (s, y, [s ; s]) = (s, y, Id)

Delay2 = (x, s′, [x ; x]) = (x, s′, Id)

The Split block is split into Split1 and Split2:

Split1 = (y, z, [y ; y]) = (y, z, Id)

Split2 = (y, v, [y ; y]) = (y, v, Id)

The blocks Delay1, Delay2, Split1, and Split2 are all the same, except the naming of the inputs and outputs.
The Add block has one single output that depends on both inputs, so it remains unchanged.

After splitting, the list of single output blocks for our example becomes

B =
(

Add,Delay1,Delay2, Split1, Split2
)

and we have
oi_rel(B) = {(x, u), (x, z), (y, s), (s′, x), (z, y), (v, y)}.

Now B is algebraic loop free.

Definition 9. A block diagram is algebraic loop free if, after splitting, the list of blocks is algebraic loop
free.

We assume that every splitting of a block A into B1, . . . , Bk is done such that A ∼ B1 ||| . . . |||Bk.

Lemma 11. If a list of blocks A = (A1, . . . , An) is split into B = (B1, . . . , Bm), then we have

A1 ||| . . . |||An ∼ B1 ||| . . . |||Bm.

For the feedbackless algorithm, we assume that A is algebraic loop free, all io-diagrams in A are single
output and deterministic, and all outputs are distinct. We denote this by ok_fbless(A).
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Definition 10. For A, such that ok_fbless(A), a variable u is internal in A if there exist A and B in A
such that O(A) = u and u ∈ set(I(B)). We denote the set of internal variables of A by internal(A).

Definition 11. If A and B are single output io-diagrams, then their internal serial composition is defined
by

A � B = if set(O(A)) ⊆ set(I(B)) then A ; ; B else B

and
A � (B1, . . . , Bn) = (A � B1, . . . , A � Bn)

We use this composition when all io-diagrams have a single output, and for an io-diagram A, we connect
A in series with all io-diagrams from B1, . . . , Bn that have O(A) as an input.

The internal serial composition satisfies some properties that are used in proving the correctness of the
algorithm.

Lemma 12. If ok_fbless(A,B,C) then ((A � B) � (A � C)) ∼ ((B � A) � (B � C))

Lemma 13. If ok_fbless(A) and A ∈ set(A) such that O(A) ∈ internal(A) then

1. ok_fbless(A � (A⊖A)) and

2. internal(A � (A⊖A)) = internal(A) − {O(A)}.

8.2 Functional Definition of the Feedbackless Strategy

Definition 12. For a list x of distinct internal variables of A, we define by induction on x the function
fbless(x,A) by

fbless(ǫ,A) = A

fbless(u · x,A) = fbless(x,A � (A⊖A))

where A is the unique io-diagrams from A with O(A) = u.

Lemma 13 shows that the function fbless is well defined.
The function fbless is the functional equivalent of the feedbackless iterative algorithm that we introduce

in Subsection 8.3.

Theorem 5. If A = (A1, . . . , An) is a list of io-diagrams satisfying ok_fbless(A), x is a distinct list of all
internal variables of A (set(x) = internalA), and (B1, . . . , Bk) = fbless(x,A) then

FB(A1 ||| . . . |||An) ∼ (B1 ||| . . . |||Bn).

This theorem together with Lemma 11 show that the result of the fbless function is io-equivalent to the
results of the nondeterministic algorithm. This theorem also shows that the result of fbless is independent
of the choice of the order of the internal variables in x.

The proof of Theorem 5 is available in the RCRS formalization [17], and it is based on Lemmas 12 and 13
and other results.

8.3 The Feedbackless Translation Algorithm

The recursive function fbless calculates the feedbackless translation, but it assumes that the set of internal
variables is given at the beginning in a specific order. We want an equivalent iterative version of this function,
which at every step picks an arbitrary io-diagram A with internal output, and performs one step:

A := A � (A⊖A)

The feedbackless algorithm is given in Alg. 2.
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input: A = (A1 . . . , An) (list of io-diagrams satisfying ok_fbless(A))

while internal(A) 6= ∅:

[A := A′ | ∃ A ∈ set(A) : O(A) ∈ internal(A) ∧ A′ = A � (A⊖A) ]

A := B1 ||| . . . |||Bk (where A = (B1, . . . , Bk))

Alg. 2: Feedbackless algorithm for translating HBDs.

The feedbackless algorithm is also nondeterministic, because it allows choosing at every step one of the
available io-diagrams with internal output. As we will see in Subsection 8.4, this nondeterminism allows for
different implementations regarding the complexity of the generated expressions.

Theorem 6. If A = (A1 . . . , An) is a list of io-diagrams satisfying ok_fbless(A), then the feedbackless
algorithm terminates for input A, and if A is the output of the algorithm on A, then

FB(A1 ||| . . . |||An) ∼ A.

Proof. Let Feedbackless be the predicate transformer of the feedbackless algorithm. We prove that choosing
nondeterministically an order x of the internal variables of A, and calculating fbless(x,A) is refined by
Feedbackless. Formally we have:

{ok_fbless(A)} ;

[A := B1 ||| . . . |||Bk | ∃x : set(x) = internal(A) ∧ (B1, . . . , Bk) = fbless(x,A) ]

⊑

Feedbackless

To prove this refinement we need to use the assertion {ok_fbless(A)}. Intuitively, this assertion restricts the
refinement only for inputs A satisfying the property ok_fbless(A).

Because of this refinement, the feedbackless algorithm terminates.
Using this refinement, Lemma 3 (connecting refinement to Hoare correctness triples), and Theorem 5,

we obtain that the output of Feedbackless satisfies the desired property:

FB(A1 ||| . . . |||An) ∼ A,

when the input satisfies ok_fbless(A). Stated as a Hoare correctness triple, this property is:

(

ok_fbless(A) ∧ A = (A1, . . . , An)
)

{| Feedbackless |}
(

FB(A1 ||| . . . |||An) ∼ A
)

The details are available in the RCRS formalization [17].

Theorem 7. For a deterministic and algebraic loop free block diagram, the feedbackless algorithm and the
nondeterministic algorithm are equivalent.

Proof. Assume A = (A1 . . . , An) is the initial set of blocks satisfying io−distinct(A), and A is one possible
output of the nondeterministic algorithm. We have FB(A1 ||| . . . |||An) ∼ A.

Assume that B = (B1 . . . , Bm) is a splitting of A satisfying ok_fbless(B) and B is the output of the
feedbackless algorithm for B. We have FB(B1 ||| . . . |||Bm) ∼ B.

Because B is a splitting of A we also have A1 ||| . . . |||An ∼ B1 ||| . . . |||Bm.

Finally, using Lemma 8, we obtain A ∼ B.
If we apply the feedbackless algorithm to the example from Fig. 1a we obtain:
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Figure 14: Example for efficient implementation of feedbackless.

(

Add,Delay1,Delay2, Split1, Split2
)

7→ {Variable x is internal and O(Add) = x}
(

Delay1, ((z, u), s
′,D(Add) ; D(Delay2)), Split1, Split2

)

7→ {Variable y is internal and O(Delay1) = y}
(

((z, u), s′,D(Add) ; D(Delay2)),

(s, z,D(Delay1) ; D(Split1)), (s, v,D(Delay1) ; D(Split2))
)

7→ {Variable z is internal}
(

((s, u), s′, ((D(Delay1) ; D(Split1)) ‖ Id) ; D(Add) ; D(Delay2)),

(s, v,D(Delay1) ; D(Split2))
)

7→ {There are no internal variables anymore}

((s, u), (s′, v), [s, u ; s, u, s] ; (((D(Delay1) ; D(Split1)) ‖ Id) ; D(Add) ; D(Delay2))

‖ (D(Delay1) ; D(Split2)))

= {Simplifications}

((s, u), (s′, v), [s, u ; s, u, s] ; (((Id ; Id) ‖ Id) ; D(Add) ; Id) ‖ (Id ; Id))

= {Simplifications}

((s, u), (s′, v), [s, u ; s, u, s] ; (D(Add) ‖ Id))

8.4 On the Nondeterminism of the Feedbackless Translation

We have seen already that different choices in the nondeterministic abstract algorithm result in different
algebraic expressions, e.g., with different numbers of composition operators. We show in this section that
the same is true for the feedbackless translation algorithm. In particular, consider a framework like the
Refinement Calculus of Reactive Systems [14], where the intermediate results of the algorithm are symboli-
cally simplified at every translation step. Different choices of the order of internal variables could result in
different complexities of the simplification work. We illustrate this with the example from Figure 14.

After splitting the list of blocks for this example is

A =
(

(u, a,A), (a, b, B), (b, c, Id), (b, d, Id), (c, v, C), (d, w,D)
)

and the set of internal variables is
internal(A) = {a, b, c, d}.

If we choose the order (c, d, b, a), then after first two steps (including intermediate simplifications) we
obtain the list:

(

(u, a,A), (a, b, B), (b, v, C), (b, w,D)
)

After another step for internal variable b we obtain:

(

(u, a,A), (a, v, simplify(B ; C)), (a, w, simplify(B ; D))
)
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where the function simplify models the symbolic simplification. Finally, after applying the step for the
internal variable a we obtain:

(

(u, v, simplify(A ; simplify(B ; C))), (u,w, simplify(A ; simplify(B ; D)))
)

(3)

In this order, we end up simplifying A serially composed with B twice. This is especially inefficient if A and
B are complex. If we choose the order (c, d, a, b), then in the first three steps we obtain:

(

(u, b, simplify(A ; B)), (b, v, C), (b, w,D)
)

At this point the term A ; B is simplified, and the simplified version is composed with C and D to obtain:

(

(u, v, simplify(simplify(A ; B) ; C)), (u,w, simplify(simplify(A ; B) ; D))
)

(4)

If we compare relations (3) and (4) we see the same number of occurrences of simplify, but in relation (4)
there are two occurrences of the common subterm simplify(A ; B), and this is simplified only once.

As this example shows, different choices of the nondeterministic feedbackless translation strategy result
in expressions of different quality, in particular with respect to simplification. It is beyond the scope of
this paper to examine efficient deterministic implementations of the feedbackless translation. Our goal
here is to prove the correctness of this translation, by proving its equivalence to the abstract algorithm.
It follows that every refinement/determinization of the feedbackless strategy will also be equivalent to the
abstract algorithm, and therefore a correct implementation of the semantics. Once we know that all possible
refinements give equivalent results, we can concentrate in finding the most efficient strategy. In general,
we remark that this way of using the mechanisms of nondeterminism and refinement are standard in the
area of correct by construction program development, and are often combined to separate the concerns of
correctness and efficiency, as is done here.

9 Implementation in Isabelle

Our implementation in Isabelle uses locales [6] for the axioms of the algebra. We use locale interpretations to
show that these axioms are consistent. In Isabelle locales are a powerful mechanism for developing consistent
abstract theories (based on axioms). To represent the algorithm we use monotonic predicate transformers
and we use Hoare total correctness rules to prove its correctness.

The formalization contains the locale for the axioms, a theory for constructive functions, and one for
proving that such functions are a model for the axioms. An important part of the formalization is the
theory introducing the diagrams with named inputs and outputs, and their operations and properties. The
formalization also includes a theory for monotonic predicate transformers, refinement calculus, Hoare total
correctness rules for programs, and a theory for the nondeterministic algorithm and its correctness.

In total the formalization contains 14797 lines of Isabelle code of which 13587 lines of code for the actual
problem, i.e., excluding the code for monotonic predicate transformers, refinement calculus, and Hoare rules.

10 Conclusions and Future Work

We introduced an abstract algebra for hierarchical block diagrams, and an abstract algorithm for translating
HBDs to terms of this algebra. We proved that this algorithm is correct in the sense that no matter how its
nondeterministic choices are resolved, the results are semantically equivalent. As an application, we closed a
question left open in [14] by proving that the Simulink translation strategies presented there yield equivalent
results. Our HBD algebra is reminiscent of the algebra of flownomials [40] but our axiomatization is more
general, in the sense that our axioms are weaker. This implies that all models of flownomials are also models
of our algebra. Here, we presented constructive functions as one possible model of our algebra. Our work
applies to hierarchical block diagrams in general, and the de facto predominant tool for embedded system
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design, Simulink. Proving the HBD translator correct is a challenging problem, and as far as we know our
work is the only one to have achieved such a result.

We believe that our results are reusable in other contexts as well, in at least two ways. First, every
other translation that can be shown to be a refinement/special case of our abstract translation algorithm,
is automatically correct. For example, [35, 45] impose an order on blocks such that they use mostly serial
composition and could be considered an instance of our abstract algorithm. Second, our algorithms translate
diagrams into an abstract algebra. By choosing different models of this algebra we obtain translations into
these alternative models.

As mentioned earlier, RCRS has been formalized in Isabelle [30]. The formalization is part of the RCRS
toolset which is publicly available in a figshare repository [17]. The theories relevant to this paper are
under RCRS/Isabelle/TranslateHBD. The RCRS toolset can be downloaded also from the RCRS web page:
http://rcrs.cs.aalto.fi/. The RCRS formalization represents a significant amount of work. The entire
formalization is close to 30000 lines of Isabelle code. The material for this paper consists of 14797 lines
of Isabelle code, 864 lemmas and 25 theorems, and required an effort of 8 person-months excluding paper
writing.

As future work we plan to investigate further HBD translation strategies, in addition to those studied
above. As mentioned earlier, this work is part of the broader RCRS project, which includes a Translator of
Simulink diagrams to RCRS theories implemented on top of Isabelle [14, 32, 15]. Currently the Translator
can only handle diagrams without algebraic loops, i.e., without instantaneous circular dependencies. Ex-
tending the Translator and the corresponding determinacy proofs to diagrams with algebraic loops is left for
future work. This is a non-trivial problem, because of subtleties in the definition of instantaneous feedback
semantics, especially in the presence of non-deterministic and non-input-receptive systems [34]. For deter-
ministic and input-receptive systems, however, the model of constructive functions that we use in this paper
should be sufficient. Another future research goal is to unify the proof of the third translation strategy with
that of the other two which are currently modeled as refinements of the abstract translation algorithm.

This work covers hierarchical block diagrams in general and Simulink in particular. Any type of diagram
can be handled, however, we do assume a single-rate (i.e., synchronous) semantics. Handling multi-rate or
event-triggered diagrams is left for future work. Handling hierarchical state machine models such as Stateflow
is also left for future work.

Our work in this paper and in the RCRS project in general implicitly provides, via the translation, a
formal semantics for the subset of Simulink described above. As already mentioned in §2, ultimately the
semantics of Simulink is “what the simulator does”. Since the code of the simulator is proprietary, the only
way to validate a formal semantics such as ours is by simulation. Some preliminary work towards this goal
is reported in [14], which also presents preliminary case studies, including a real-world automotive control
benchmark provided by Toyota [24]. A more thorough validation of the semantics and experimentation with
further case studies are future research topics.

As mentioned in §2, there are many existing translations from Simulink to other formalisms. It is beyond
the scope of this paper to define and prove correctness of those translations, but this could be another future
work direction. In order to do this, one would first need to formalize those translations. This in turn requires
detailed knowledge of the algorithms or even access to their implementation, which is not always available.
Our work and source code are publicly available and we hope can serve as a good starting point for others
who may wish to provide formal correctness proofs of diagram translations.
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