Skip to main content

Optimization Algorithm for an Exoskeleten Robotic Inverse Kinematic Application

  • Conference paper
  • First Online:
  • 951 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 495))

Abstract

The inverse kinematic analysis is required in many technical applications. Due to the non linearity of the system, resolving the Inverse Kinematics (IK) for robotic system becomes more challenging problem. In this chapter, the problem of IK for medical application is faced, based on human lower limb as being the three arm robotic system depending on the physiological constaints. A system analysis is carried out specially in three dimensionnel space. The developed forward kinematic model leads to define the feasible workspace of the human leg in the considered configuration. A constructive algorithm to compute the optimal IK of robot system is outlined, based on human performance measure that incorporates a new objective function of musculoskeletal discomfort. The effectiveness of the proposed approach is tested, and the algorithmic complexity is finally discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  2. Ochsner, A., Altenbach, H.: Andreas ochsner Holm Altenbach. Design and Computation of Modern Engineering Materials. Advanced Structured Materials (2014)

    Google Scholar 

  3. Kumar, V., Sen, S., Roy, S.S., Das, S.K., Shome, S.N.: Inverse kinematics of redundant manipulator using interval newton method. In: Proceedings of the 2015 Conference on Advances in Robotics, India (2015)

    Google Scholar 

  4. Tejomurtula, S., Kak, S.: Inverse kinematics in robotics using neural networks. Inf. Sci. 116(2/4), 147–164 (1999)

    Article  MathSciNet  Google Scholar 

  5. Porta J.M., Ros L., Thomas F.: Inverse kinematic solution of robot manipulators using interval analysis. In: 4th International Workshop on Computational Kinematics (2005)

    Google Scholar 

  6. Abdel-Malek, K., Yang, J., Yu, W., Duncan, J.: Human performance measures: mathematics. In: Proceedings of the ASME Design Engineering Technical Conferences (DAC) (2004)

    Google Scholar 

  7. Chen, Y.-L.: Changes in lifting dynamics after localized arm fatigue. Int. J. Ind. Ergon. 25(6), 611–619 (2000)

    Article  Google Scholar 

  8. Mi, Z., Jingzhou, Y., Abdel-Malek, K.: Optimization-based posture prediction for human upper body. Robotica 27(4), 607 (2009)

    Article  Google Scholar 

  9. Hwang B., Jeon D.: A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors. In: Passaro, V.M.N. (ed.) Sensors (Basel, Switzerland) 15.4: 83378357. PMC (2015)

    Article  Google Scholar 

  10. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2005)

    Google Scholar 

  11. Faqihi H., Saad M., Benjelloun K., Benbrahim M., Kabbaj M.N.: Tracking trajectory of a cable-driven robot for lower limb rehabilitation. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. (2016)

    Google Scholar 

  12. Faqihi H., Saad M., Benjelloun K., Benbrahim M. and Kabbaj M. Optimal 3D kinematic analysis for human lower limb rehabilitation. In: Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, 177–185 (2017)

    Google Scholar 

  13. Whitney, D.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Mach. Syst. 10, 4753 (2010)

    Google Scholar 

  14. Karpinska, J., Tchon, K., Janiak, M.: Approximation of Jacobian inverse kinematics algorithms: differential geometric vs. variational approach. J. Intell. Robot. Syst 68, 211224 (2012)

    Article  Google Scholar 

  15. Kenwright, B.: Inverse kinematic solutions for articulated characters using massively parallel architectures and differential evolutionary algorithms. In: Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2017)

    Google Scholar 

  16. Chaffin, D.B., Anderson, D.B.J.: Occupational Biomechanics. Wiley, New York, NY. Conn; Springer Series in Computational Mathematics. Springer, Berlin (1992)

    Google Scholar 

  17. HernndezSantos, C., Soto, R., Rodrguez E.: Design and dynamic modeling of humanoid biped robot eRobot. In: Proceedings of the IEEE Electronics, Robotics and Automotive Mechanics Conference, CERMA, pp. 191196. Cuernavaca, Mxico (2011)

    Google Scholar 

  18. Gowinski S., Krzyzynski T.: An inverse kinematic algorithm for human leg. J. Theor. Appl. Mechnics 54(1), 53–61, Warsaw (2016)

    Google Scholar 

  19. Dombre, E., Khalil, W.: Modeling, Performance Analysis and Control of Robot Manipulators. Wiley, New York (2007)

    Google Scholar 

  20. Yang, J., Marler, R.T., Kim, H., Arora, J.S., Abdel-Malek, K.: Multi-objective optimization for upper body posture prediction. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York (2004)

    Google Scholar 

  21. Marler, R.T., Yang, J., Rahmatalla, S., Abdel-Malek, K., Harrison, C.: Use of multiobjective optimization for digital human posture prediction. Eng. Optim. 41(10), 925–943 (2009)

    Article  Google Scholar 

  22. Eschenauer, H.A.: Georg thierauf, discretization methods and structural optimization, procedures and applications. In: Proceedings of a GAMM-Seminar October 57. Siegen, FRG (1988)

    Google Scholar 

  23. Rastegarpanah, A., Mozafar, S.: Lower limb rehabilitation using patient data. Appl. Bionics Biomech. (2016)

    Google Scholar 

  24. Gill, P., Murray, W., Saunders, A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

    Article  MathSciNet  Google Scholar 

  25. Runarsson, T.P., Yao, X.: Search biases in constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part C 35, 223243 (2005)

    Article  Google Scholar 

  26. Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algorithm A Novel Tool for Complex Optimisation Problems. Manufacturing Engineering Centre, Cardiff University (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Faqihi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faqihi, H., Saad, M., Benjelloun, K., Benbrahim, M., Kabbaj, M.N. (2020). Optimization Algorithm for an Exoskeleten Robotic Inverse Kinematic Application. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_15

Download citation

Publish with us

Policies and ethics