Skip to main content

On Complementarity Measure-driven Dynamical Systems

  • Conference paper
  • First Online:
  • 923 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 495))

Abstract

We consider a class of complementarity hybrid systems performed by measure differential equations subject to “mixed constraints” on the measure and one-sided limits of the state (prior to and just after the jump). In such systems, vector Borel measures play the role of control inputs/slack variables. We try to understand the asymptotic behavior of solutions to the complementarity problem, namely, look for a constructive representation of the closure of the trajectory funnel. As we invent, a desired representation follows from a particular approximation of solutions and can be described in terms of a specific singular space-time transformation of measure-driven processes. The developed mathematical setup is naturally applied to modeling of Lagrangian systems controlled by instantaneous blocking/releasing a part of its degrees of freedom.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goncharova, E., Staritsyn, M.: Relaxation and optimization of impulsive hybrid systems inspired by impact mechanics. In: Proceedings of 14th International Conference Informatics in Control, Automation and Robotics, pp. 474–485. Madrid, Spain, 1 July 2017

    Google Scholar 

  2. Goncharova, E., Staritsyn, M.: On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discr. Contin. Dyn. Syst. Ser. S 11(6), 1061–1070 (2018). https://doi.org/10.3934/dcdss.2018061

  3. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Automat. Control 43, 31–45 (1998)

    Article  MathSciNet  Google Scholar 

  4. Haddad, W.M., Chellaboina, V., Nersesov, S.G.: Impulsive and Hybrid Dynamical Systems. Princeton Series in Applied Mathematics. Princeton University Press, NJ (2006). Stability, dissipativity, and control

    Google Scholar 

  5. Teel, A.R., Sanfelice, R.G., Goebel, R.: Hybrid control systems. In: Mathematics of Complexity and Dynamical Systems. vol. 1–3, pp. 704–728. Springer, New York (2012)

    Google Scholar 

  6. van der Schaft, A.J., Schumacher, J.M.: Modelling and analysis of hybrid dynamical systems. In: Advances in the Control of Nonlinear Systems (Murcia, 2000). Lecture Notes in Control and Information Science, vol. 264, pp. 195–224. Springer, London (2001)

    Google Scholar 

  7. Bentsman, J., Miller, B.M.: Dynamical systems with active singularities of elastic type: a modeling and controller synthesis framework. IEEE Trans. Automat. Control 52, 39–55 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bentsman, J., Miller, B.M., Rubinovich, E.Y.: Dynamical systems with active singularities: input/state/output modeling and control. Autom. J. IFAC 44, 1741–1752 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bentsman, J., Miller, B.M., Rubinovich, E.Y., Mazumder, S.K.: Modeling and control of systems with active singularities under energy constraints: single- and multi-impact sequences. IEEE Trans. Automat. Control 57, 1854–1859 (2012)

    Article  MathSciNet  Google Scholar 

  10. Miller, B.M., Rubinovich, E.Y., Bentsman, J.: Singular space-time transformations. towards one method for solving the Painlevé problem. J. Math. Sci. (N.Y.) 219, 208–219 (2016)

    Google Scholar 

  11. Bentsman, J., Miller, B.M., Rubinovich, E.Y., Zheng, K.: Hybrid dynamical systems with controlled discrete transitions. Nonlinear Anal. Hybrid Syst. 1, 466–481 (2007)

    Article  MathSciNet  Google Scholar 

  12. Glocker, C.: On frictionless impact models in rigid-body systems. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359, 2385–2404 (2001). Non-smooth mechanics

    Google Scholar 

  13. Brogliato, B.: Nonsmooth Mechanics. Communications and Control Engineering Series, 3rd edn. Springer, Cham (2016). Models, dynamics and control

    Google Scholar 

  14. Glocker, C.: Set-Valued Force Laws. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001). Dynamics of non-smooth systems

    Google Scholar 

  15. Moreau, J.J.: Quadratic programming in mechanics: dynamics of one-sided constraints. SIAM J. Control 4, 153–158 (1966)

    Article  MathSciNet  Google Scholar 

  16. Miller, B.M., Bentsman, J.: Optimal control problems in hybrid systems with active singularities. Nonlinear Anal. 65, 999–1017 (2006)

    Article  MathSciNet  Google Scholar 

  17. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley Series in Nonlinear Science. Wiley, New York (1996). A Wiley-Interscience Publication

    Google Scholar 

  18. Stewart, D.E.: Existence of solutions to rigid body dynamics and the Painlevé paradoxes. C. R. Acad. Sci. Paris Sér. I Math. 325, pp. 689–693 (1997)

    Google Scholar 

  19. Gurman, V.I.: Printsip rasshireniya v zadachakh upravleniya. 2nd edn. Fizmatlit “Nauka”, Moscow (1997)

    Google Scholar 

  20. Gurman, V.I.: Singularization of control systems. In: Singular Solutions and Perturbations in Control Systems (Pereslavl-Zalessky, 1997), pp. 5–12. IFAC Proceedings Series IFAC, Laxenburg (1997)

    Google Scholar 

  21. Miller, B.M.: Controlled systems with impact interactions. Sovrem. Mat. Fundam. Napravl. 42, 166–178 (2011)

    Google Scholar 

  22. Warga, J.: Variational problems with unbounded controls. J. Soc. Indust. Appl. Math. Ser. A Control 3, 424–438 (1965)

    Google Scholar 

  23. Arutyunov, A., Jaćimović, V., Pereira, F.: Second order necessary conditions for optimal impulsive control problems. J. Dyn. Control Syst. 9, 131–153 (2003)

    Article  MathSciNet  Google Scholar 

  24. Arutyunov, A.V., Karamzin, D.Y., Pereira, F.L.: State constraints in impulsive control problems: Gamkrelidze-like conditions of optimality. J. Optim. Theory Appl. 166, 440–459 (2015)

    Article  MathSciNet  Google Scholar 

  25. Arutyunov, A., Karamzin, D., Pereira, F.L.: On a generalization of the impulsive control concept: controlling system jumps. Discret. Contin. Dyn. Syst. 29, 403–415 (2011)

    Article  MathSciNet  Google Scholar 

  26. Karamzin, D.Y.: Necessary conditions of the minimum in an impulse optimal control problem. J. Math. Sci. 139, 7087–7150 (2006)

    Article  MathSciNet  Google Scholar 

  27. Karamzin, D.Y., de Oliveira, V.A., Pereira, F.L., Silva, G.N.: On the properness of an impulsive control extension of dynamic optimization problems. ESAIM Control Optim. Calc. Var. 21, 857–875 (2015)

    Article  MathSciNet  Google Scholar 

  28. Bressan, A., Rampazzo, F.: On differential systems with quadratic impulses and their applications to Lagrangian mechanics. SIAM J. Control Optim. 31, 1205–1220 (1993)

    Article  MathSciNet  Google Scholar 

  29. Bressan Jr., A., Rampazzo, F.: Impulsive control systems without commutativity assumptions. J. Optim. Theory Appl. 81, 435–457 (1994)

    Article  MathSciNet  Google Scholar 

  30. Dykhta, V.A.: Impulse-trajectory extension of degenerated optimal control problems. In: The Lyapunov functions Method and Applications. IMACS Annals of Computational and Applied Mathematics, vol. 8, pp. 103–109. Baltzer, Basel (1990)

    Google Scholar 

  31. Dykhta, V.: Second order necessary optimality conditions for impulse control problem and multiprocesses. In: Singular Solutions and Perturbations in Control Systems (Pereslavl-Zalessky, 1997), pp. 97–101. IFAC Proceedong Series IFAC, Laxenburg (1997)

    Google Scholar 

  32. Dykhta, V.A., Samsonyuk, O.N.: Optimalnoe impulsnoe upravlenie s prilozheniyami. Fizmatlit “Nauka”, Moscow (2000)

    Google Scholar 

  33. Dykhta, V.A., Samsonyuk, O.N.: The maximum principle in nonsmooth optimal impulse control problems with multipoint phase constraints. Izv. Vyssh. Uchebn. Zaved. Mat. 19–32 (2001)

    Google Scholar 

  34. Gurman, V.: Extensions and global estimates for evolutionary discrete control systems. In: Modelling and Inverse Problems of Control for Distributed Parameter Systems (Laxenburg, 1989). Lecture Notes in Control and Information Science, vol. 154, pp. 16–21. Springer, Berlin (1991)

    Google Scholar 

  35. Gurman, V.I.: The method of multiple maxima and optimality conditions for singular extremals. Differ. Uravn. 40(1486–1493), 1581–1582 (2004)

    MathSciNet  Google Scholar 

  36. Krotov, V.F.: Discontinuous solutions of variational problems. Izv. Vysš. Učebn. Zaved. Matematika 1960, 86–98 (1960)

    MathSciNet  Google Scholar 

  37. Krotov, V.F.: The principle problem of the calculus of variations for the simplest functional on a set of discontinuous functions. Dokl. Akad. Nauk SSSR 137, 31–34 (1961)

    MathSciNet  Google Scholar 

  38. Krotov, V.F.: On discontinuous solutions in variational problems. Izv. Vysš. Učebn. Zaved. Matematika 1961, 75–89 (1961)

    MathSciNet  Google Scholar 

  39. Krotov, V.F.: Global methods to improve control and optimal control of resonance interaction of light and matter. In: Modeling and Control of Systems in Engineering, Quantum Mechanics, Economics and Biosciences (Sophia-Antipolis, 1988). Lecture Notes in Control and Information Science, vol. 121, pp. 267–298. Springer, Berlin (1989)

    Google Scholar 

  40. Pereira, F., Vinter, R.B.: Necessary conditions for optimal control problems with discontinuous trajectories. J. Econ. Dynam. Control 10, 115–118 (1986)

    Article  MathSciNet  Google Scholar 

  41. Vinter, R.B., Pereira, F.L.: A maximum principle for optimal processes with discontinuous trajectories. SIAM J. Control Optim. 26, 205–229 (1988)

    Article  MathSciNet  Google Scholar 

  42. Rishel, R.W.: An extended Pontryagin principle for control systems whose control laws contain measures. J. Soc. Indust. Appl. Math. Ser. A Control 3, 191–205 (1965)

    Google Scholar 

  43. Warga, J.: Optimal Control of Differential and Functional Equations. Academic, London (1972)

    MATH  Google Scholar 

  44. Zavalishchin, S.T., Sesekin, A.N.: Dynamic Impulse Systems. Mathematics and its Applications, vol. 394. Kluwer Academic Publishers Group, Dordrecht (1997). Theory and applications

    Google Scholar 

  45. Code, W.J., Loewen, P.D.: Optimal control of non-convex measure-driven differential inclusions. Set-Valued Var. Anal. 19, 203–235 (2011)

    Article  MathSciNet  Google Scholar 

  46. Fraga, S.L., Pereira, F.L.: Hamilton-Jacobi-Bellman equation and feedback synthesis for impulsive control. IEEE Trans. Automat. Control 57, 244–249 (2012)

    Article  MathSciNet  Google Scholar 

  47. Dar\(^\prime \) in, A.N., Kurzhanskiĭ, A.B.: Fast effects in the problem of the synthesis of controls under uncertainty. Differ. Uravn. 47, 963–971 (2011)

    Google Scholar 

  48. Dar\(^\prime \) in, A.N., Kurzhanskiĭ, A.B.: Synthesis of controls in the class of generalized higher-order functions. Differ. Uravn. 43(1581), 1443–1453 (2007)

    Google Scholar 

  49. Miller, B.M., Rubinovich, E.Y.: Impulsive Control in Continuous and Discrete-continuous Systems. Kluwer Academic/Plenum Publishers, New York (2003)

    Book  Google Scholar 

  50. Kozlov, V.V., Treshchëv, D.V.: Billiards. Translations of Mathematical Monographs, vol. 89. American Mathematical Society, Providence (1991). A genetic introduction to the dynamics of systems with impacts. Translated from the Russian by Schulenberger, J.R

    Google Scholar 

  51. Moreau, J.J.: Application of convex analysis to some problems of dry friction. In: Trends in Applications of Pure Mathematics to Mechanics, Vol. II (Second Sympos., Kozubnik, 1977). Monographs Studies in Mathematics, vol. 5, pp. 263–280. Pitman, London (1979)

    Google Scholar 

  52. Yunt, K., Glocker, C.: Modeling and optimal control of hybrid rigidbody mechanical systems. In: Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, vol. 4416, pp. 614–627. Springer, Berlin (2007)

    Google Scholar 

  53. Yunt, K.: An augmented Lagrangian based shooting method for the optimal trajectory generation of switching Lagrangian systems. Dyn. Contin. Discret. Impuls. Syst. Ser. B Appl. Algorithms 18, 615–645 (2011)

    Google Scholar 

  54. Goncharova, E., Staritsyn, M.: Optimization of measure-driven hybrid systems. J. Optim. Theory Appl. 153, 139–156 (2012)

    Article  MathSciNet  Google Scholar 

  55. Goncharova, E.V., Staritsyn, M.V.: Optimal impulsive control problem with state and mixed constraints: the case of vector-valued measure. Autom. Remote Control 76, 377–384 (2015). Translation of Avtomat. i Telemekh. 2015(3), 13–21

    Google Scholar 

  56. Branicky, M.S.: Hybrid dynamical systems, or HDS: the ultimate switching experience. In: Control using logic-based switching (Block Island, RI, 1995). Lecture Notes in Control and Information Science, vpl. 222, pp. 1–12. Springer, London (1997)

    Google Scholar 

Download references

Acknowledgements

The work is partially supported by the Russian Foundation for Basic Research, grants nos 18-31-20030 and 17-08-00742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Staritsyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Staritsyn, M., Goncharova, E. (2020). On Complementarity Measure-driven Dynamical Systems . In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_35

Download citation

Publish with us

Policies and ethics