Skip to main content

Impedance Control and Force Estimation of a Redundant Parallel Kinematic Manipulator

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 495))

Abstract

This paper presents impedance control through force estimation of a redundantly actuated Parallel Kinematic Manipulator. The impedance control is a model based control that sets a stiffness, damping and apparent inertia in the task space of the robot. The control is based on the feedback linearisation of the dynamics. The impedance control is achieved through an optimization promoting the even distribution of torques over actuators. Next, a force estimator is applied through an nonlinear disturbance observer. Finally, the estimated force is used in the impedance controller to set an apparent inertia of the moving platform of the robot. The approach shows a good response in low frequencies and good external force estimation required for impedance controlled tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Johansson, R., Nilsson, K., Robertsson, A.: Force Control, pp. 1933–1965. Springer, Germany (2015)

    Google Scholar 

  2. URScript example. https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/urscript-dynamic-force-control-20571/. Accessed 22 Nov 2017

  3. Briggs, A.J.: An efficient algorithm for one-step planar compliant motion planning with uncertainty. Algorithmica 8(1), 195–208 (1992)

    Article  MathSciNet  Google Scholar 

  4. Bruyninckx, H., De Schutter, J.: Specification of force-controlled actions in the ldquo;task frame formalism rdquo;-a synthesis. IEEE Trans. Robot. Autom. 12(4), 581–589 (1996)

    Article  Google Scholar 

  5. FANUC Industrial Applications. http://www.fanuc.eu/ro/en/industrial-applications/automated-material-handling. Accessed 17 Nov 2017

  6. Taghirad, H.D.: Parallel Robots: Mechanics and Control. CRC Press (2013)

    Google Scholar 

  7. Schutz, D., Wahl, F.M.: Robotic Systems for Handling and Assembly, vol. 67. Springer, Heidelberg (2011)

    Book  Google Scholar 

  8. Patel, Y., George, P.: Parallel manipulators applications a survey. In: Modern Mechanical Engineering, pp. 57–64 (2012)

    Article  Google Scholar 

  9. McCallion, H., Pham, D.T.: The analysis of a six degrees of freedom work station for mechanized assembly. In: Proceedings of 5th World Congress on Theory of Machines and Mechanisms, pp. 611616. Montreal (1979)

    Google Scholar 

  10. Ming, A., Higuchi, T.: Study on multiple degree of freedom positioning mechanisms using wires, part 2, development of a planar completely restrained positioning mechanism. Int. J. Jpn. Soc. Prec. Eng. 28(3), 235242 (1994)

    Google Scholar 

  11. Salcudean et al., S.E.: A six degree-of-freedom, hydraulic, one person motion simulator. In: IEEE International Conference on Robotics and Automation, pp. 24372443. San Diego (1994)

    Google Scholar 

  12. Powell, I.L.: The kinematic analysis and simulation of the parallel topology manipulator. Marconi Rev. XLV(226), 121138 (1982). Third Quarter

    Google Scholar 

  13. Company, O., Pierrot, F.: Modeling and design issues of a 3-axis parallel machine tool. Mech. Mach. Theory 37(11), 1325–1345 (2002)

    Article  Google Scholar 

  14. Peshkin, M.A.: Programmed compliance for errorcorrective manipulation. IEEE Trans. Robot. Autom. 6, 473–482 (1990)

    Article  Google Scholar 

  15. Mason, M.T.: Compliance and force control for computer controlled manipulators. IEEE Trans. Syst., Man, Cybern. 11, 418–432 (1981)

    Article  Google Scholar 

  16. Park, H., Bae, J.-H., Park, J.-H., Baeg, M.-H., Park, J.: Intuitive peg-in-hole assembly strategy with a compliant manipulator. IEEE ISR 2013, 1–5 (2013)

    Google Scholar 

  17. Hogan, N.: Impedance control: an approach to manipulation: Part itheory. ASME. J. Dyn. Syst, Meas. Control 107(1), 1–7 (1985)

    Article  Google Scholar 

  18. Briot, S., Gautier, M., Krut, S.: Dynamic parameter identification of actuation redundant parallel robots: application to the dualv. In: AIM: Advanced Intelligent Mechatronics, Jul 2013, Wollongong, Australia. IEEE/ASME, pp. 637–643 (2013)

    Google Scholar 

  19. Kock, S., Schumacher, W.: Redundant Parallel Kinematic Structures and Their Control, pp. 143–157. Springer, Heidelberg (2011)

    Google Scholar 

  20. Cheng, H., Liu, G.F., Yiu, Y.K., Xiong, Z.H., Li, Z.X.: Advantages and dynamics of parallel manipulators with redundant actuation. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), vol. 1, pp. 171–176 (2001)

    Google Scholar 

  21. Preben Hjørnet. Blueworkforce home page (2016). http://blueworkforce.com/

  22. de Dios Flores Mendez, J., Schiøler, H., Madsen, O., Bai, S.: Impedance control of a redundant parallel manipulator. In: Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, pp. 104–111 (2017)

    Google Scholar 

  23. Mohammadi, A., Marquez, H.J., Tavakoli, M.: Nonlinear disturbance observers: design and applications to euler?lagrange systems. IEEE Control Syst. 37(4), 50–72 (2017)

    Article  MathSciNet  Google Scholar 

  24. Chen, W.-H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)

    Article  Google Scholar 

  25. Korayem, M.H., Haghighi, R.: Nonlinear Disturbance Observer for Robot Manipulators in 3D Space, pp. 14–23. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan de Dios Flores-Mendez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Flores-Mendez, J.d.D., Schiøler, H., Madsen, O., Bai, S. (2020). Impedance Control and Force Estimation of a Redundant Parallel Kinematic Manipulator. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_9

Download citation

Publish with us

Policies and ethics