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Abstract. In this work, we propose an outsourced Secure Multilayer
Perceptron (SMLP) scheme where privacy and confidentiality of both
the data and the model are ensured during the training and the classi-
fication phases. More clearly, this SMLP : i) can be trained by a cloud
server based on data previously outsourced by a user in an homomorphi-
cally encrypted form; ii) its parameters are homomorphically encrypted
giving thus no clues to the cloud; and iii) it can also be used for classifying
new encrypted data sent by the user returning him the encrypted classi-
fication result encrypted. The originality of this scheme is threefold. To
the best of our knowledge, it is the first multilayer perceptron (MLP) se-
cured in its training phase over homomorphically encrypted data with no
problem of convergence. And It does not require extra-communications
between the server and the user. It is based on the Rectified Linear Unit
(ReLU) activation function that we secure with no approximation con-
trarily to actual SMLP solutions. To do so, we take advantage of two
semi-honest non-colluding servers. Experimental results carried out on a
binary database encrypted with the Paillier cryptosystem demonstrate
the overall performance of our scheme and its convergence.

Keywords: Secure neural network · Multilayer perceptron · Homomor-
phic encryption · Cloud computing.

1 Introduction

Nowadays, cloud technology allows outsourcing the processing and/or storage
of huge volume of data, these ones being personal data or data issued from
many sources for big-data analysis purposes. In healthcare domain, for example,
different initiatives aim at sharing medical images and Personal Health Records
(PHR) between health professionals or hospitals with the help of cloud [11]. They
take advantage of the medical knowledge this volume of data represents so as to
develop new decision making tools based on machine learning techniques. Among
such techniques, there is the multilayer perceptron (MLP) method which belongs
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to Neural Network (NN) family and which is a core element of deep learning
methods; methods that are broadly studied and used nowadays. A MLP consists
of multiple layers of interconnected perceptrons (see Fig. 3). A perceptron is a
classifier that maps its inputs with a vector of weights followed by an activation
function. The output of a perceptron is the input of the next perceptron layer. As
all machine learning algorithms, MLP works in two distinct ways: the training
phase and the classification of new data. In a supervised mode, the training phase
aims at inferring the network parameters from a labeled database by optimizing
some objective function. Once trained, a MLP scheme is used so as to classify
new data.

Despite the attractive benefits provided by MLP, one of the actual limits of
its outsourcing in a cloud environment stands on the security of data used for
the training phase or for classification purposes issues as well as of the MLP
parameters. Indeed, externalization involves that the user looses the control on
his data and on their processing [10]. Recent news show a clear evidence that
outsourced storage is not safe against privacy threats, these ones being external
(e.g., hackers [17]) or internal [1, 10]. At the same time, the parameter of a
process, like those of a trained MLP, may have some important added value
for a company, for example. There is thus an interest to develop secured MLP
(SMLP) methods that can be trained remotely using outsourced data while
respecting data privacy and confidentiality.

Different approaches have been proposed to secure neural network methods.
Some of them are based on additive secret sharing that allows several parties
to jointly compute the value of a target function f(.) without compromising the
privacy of its input data. For instance, [19] present a privacy preserving NN
learning protocol where each user performs most of the learning computations
in the clear domain except the NN weight update which is performed using the
secret sharing. One limit of this solution is that updated NN weight values are
revealed to all users at each iteration, giving thus some clues about users’ train-
ing data. To reduce such information leakage, [20] proposes to only share a small
fraction of parameters which the NN weights update can be performed. This
method consequently establishes a compromise between accuracy and privacy.
Higher the number of shared parameters, better is the classification accuracy but
lower is privacy. To go further, and in addition to the secure NN weight update,
[9] aims at securing the NN activation function with additive secret sharing.
Because activation functions are usually non-linear (e.g. most MLP work with
the Sigmoid and ReLU activation functions), the authors of [9] linearly approxi-
mate them, introducing at the same time convergence issues in the MLP training
phase. An alternative to these approaches is to train the neural network in clear
domain and by next use it with encrypted data. Most solutions make use of
homomorphic encryption the interest of which is that it allows performing oper-
ations (e.g. + , ×) onto encrypted data with the guarantee that the decrypted
result equals the one carried out with unencrypted data [2–4]. To the best of
our knowledge, the NN training phase with homomorphically encrypted data
has only been theoretically studied in [23]. It is shown that NN can be trained
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using fully homomorphic encryption data and by approximating the activation
functions with polynomials. However, with fully homomorphic cryptosystems,
both the computational complexity and the length of cipher-texts increase with
the number of desired operations in order to guarantee the correct decryption
after polynomial evaluation. While these increase slowly by increasing the num-
ber of additions, it is more important when adding multiplications. Therefore,
practical implementations should have a denoising process in order to be fea-
sible or to restrict the computation just on low degree polynomials. All other
proposals focus on the NN classification phase. As example, [6] proposes three
privacy homomorphic encryption based on three classifiers: the linear and two
low degree models. In [8] a fully homomorphic convolutional neural networks
classifier (CNN) is proposed.

In this paper, we propose a secure multilayer perceptron (SMLP) method
the training and classification procedures of which do not suffer of convergence
issues. To do so, we take advantage of the rectified linear unit (ReLU). Beyond its
accuracy and its contribution to MLP efficiency [13], ReLU can be secured with
homomorphic encryption and two non-colluding semi-honest servers avoiding
thus the need to use an approximation procedure of the perceptron’s output as
proposed by the above methods. Another originality of our SMLP, is that its
output is also encrypted. That is not the case of actual solutions that provide
unencrypted output. Furthermore, our SMLP is entirely outsourced in the sense
that it does not require extra-communication overhead in-between the servers
and the user to conduct the training and classification phases. The user just has
to send his data homomorphically encrypted to the cloud server that will train
the SMLP or classify data, without the cloud being able to infer information
about the SMLP model parameters, the data or the classification result.

The rest of this paper is organized as follows. Section 2 regroups preliminaries
related to Multilayer Perceptron and the Paillier cryptosystem on which relies
the implementation of our SMLP. We also provide the basic properties and
the operations one can implement over Paillier encrypted data when using two
non-colluding semi-honest servers. In Section 3, we detail our secure multilayer
perceptron. Section 4 provides some experimental results conducted to model
the ”AND” logic function on a binary database, and the security analysis of our
proposal. Section 5 concludes this paper.

2 Preliminaries on the Paillier cryptosystem and
Multilayer Perceptron

2.1 The Paillier cryptosystem

Being asymmetric, the Paillier cryptosystem [18] makes use of a pair of private
and public keys. Let p and q be two large primes. Let also Kp = pq, ZKp =
{0, 1, ...,Kp−1}, Z∗Kp

denotes the set of integers that have multiplicative inverses
modulo Kp in ZKp

. We select also g ∈ Z∗K2
p

such as

gcd(L(gλ mod K2
p),Kp) = 1 (1)
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Fig. 1: Secure neural network architecture in a cloud environment.

where: gcd(.) is the greatest common divisor function; λ = lcm(p − 1, q − 1) is
the private key (Ks), with lcm(.) the least common multiple function; the pair
(Kp, g) defines the public key; and, L(s) = s−1

Kp
. Let m ∈ ZKp

the message to be

encrypted. Its cipher-text is derived as

c = E[m, r] = gmrKp mod K2
p (2)

where E[.] is the encryption function, r ∈ Z∗Kp
is a random integer. Since r is

not fixed, the Paillier cryptosystem satisfies the so-called ”semantic security”.
More clearly, depending on the value of r, the encryption of the same plain-text
message yields to different cipher-texts even though the public encryption key
is the same. The plain-text m is recovered using the decryption function D[.]
defined as follow

m = D[c, λ] =
L(cλmodK2

p)

L(gλmodK2
p)

mod Kp (3)

The Paillier cryptosystem has an additive homomorphic property. Considering
two plain-texts m1 and m2, then

E[m1, r1].E[m2, r2] = E[m1 +m2, r1.r2] (4)

E[m1, r1]m2 = E[m1.m2, r
m2
1 ] (5)

For the sake of simplicity, in the sequel we denote E[m, r] by E[m].



Secure Multilayer Perceptron Based On Homomorphic Encryption 5

2.2 Operations over Paillier encrypted data

As stated above, the Paillier cryptosystem allows implementing linear operations.
It can however be used to compute multiplications, divisions and comparisons
with the help of two non-colluding semi-honest servers P1 and P2.

– Multiplication operator in Paillier encrypted domain MulP1,P2
e (.; .)

Let us consider two messages a and b and their respective Paillier encrypted
versions E[a] and E[b] obtained with the user public key Kp. In order to
compute E[a× b] without revealing any information about a and b, one can
take advantage of blinding and two servers P1 and P2. Assuming that P1

possesses (E[a], E[b]), the objective is that P2 returns E[a × b] to P1 while
ensuring that no clues about a and b are revealed to P1 and P2. Under the
hypothesis P2 knows the user secret key Ks and that it does not collude with
P1, this objective can be reach according to the following procedure we will
refer as MulP1,P2

e (a; b):
1. Data randomization - P1 firstly randomizes E[a] and E[b] such that:

a′ = E[a]× E[ra] = E[a+ ra] (6)

b′ = E[b]× E[rb] = E[b+ rb] (7)

where ra and rb are two random numbers only known from P1 and
uniformly chosen in ZKp

. Then P1 sends a′ and b′ to P2.
2. Multiplication computation phase - On its side, using the user private

key Ks, P2 decrypts a′ and b′ and multiplies the result

M = (a+ ra)(b+ rb) (8)

P2 next encrypts M into E[M ] using the user public key Kp and sends
it to P1.

3. Multiplication denoising - In order to get E[a× b], P1 just has to remove
the extra-random factors as follow

E[a× b] = E[M ]× E[b]−ra × E[a]−rb × E[−ra × rb] (9)

– Division operator in Paillier encrypted domain: DivP1,P2
e (.; .)

Different ways, based on two servers, have been proposed so as to compute
the division . The one used in this paper works as follows. Let us consider P1

has an encrypted message E[a] and that it wants to divide a by d. At this
time d can be encrypted or not, that is to say known or unknown from P1.
Again, we don’t want P1 and P2 to learn details about a. The computation of
E[a/d] from E[a] and d is also based on blinding. As above, it is assumed that
P2 possesses the decryption key Ks. Our division operation DivP1,P2

e (a; d) is
thus a procedure defined as:
1. Data blinding - P1 randomly chooses a number r ∈ ZKp and computes
E[z] = E[a+ r] = E[a]E[r]. P1 then sends E[z] to P2.

2. Division computation - P2 decrypts E[z] with the user private key Ks

and computes c = z/d. P2 encrypts the division result E[c] and sends it
to P1.

3. Division denoising - P1 computes E[a/d] such as:

E[a/d] = E[c]× E[−r/d]. (10)
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2.3 Multilayer Perceptron

The common architecture of a MLP is given in Fig. 3. It is constituted of per-
ceptrons organized in different layers: the input and the output layers and, in-
between them, a given number of hidden layers (one in the given example of Fig.
3). The first layer takes as input the user data as a vector X = {xi}i=1...n where
n is the number of perceptron inputs, while the output layer provides the class
of the input data. As illustrated in Fig. 2, a perceptron is a classifier that maps
its input (an integer value vector X) to an output z value:

z = f(y =< W.X >) = f(
∑
i=1

wi.xi) = f(y) (11)

where W is a weight vector of size n and f() an activation function. Many
activation functions have been proposed (e.g. Sigmoid, Tanh, ReLU ). In this
work, we opted for the rectified linear unit (ReLU) activation function, one of
the most used function due to its accuracy and its efficiency [13]. Another reason
is that it can be secured by means of homomorphic operators. We will come back
in details on this point in Section 3. ReLU is defined such as

f(y) =

{
y if y ≥ 0
0 otherwise

(12)

To make such a MLP scheme operational, it should be trained so as to find the
perceptron weigth values. This training can be supervised or unsupervised. In the
former case, the classes of data the MLP should distinguish are a priori known.
Thus, to train a MLP scheme, the user provides labeled data T = {ti}i=1...K

where K is the size of the training set and ti indicates the class label of the ith

training input data. In the second case, the perceptron will identify by itself the
different classes of data. The solution we proposed in this work is trained on
labeled data.

The supervised training of NN relies on two phases that are iteratively ap-
plied: the feed-forward and the back-propagation phases. Before starting the first
feed-forward phase, all perceptrons’ weights are initialized with random values,
for instance. Then training data are provided as input to the MLP. By next,
the error between the original label and the ones computed by the perceptron
is calculated using an objective function (called also cost function) (e.g. cross
entropy, Mean Square Error, Minkowski distance). This error is then used in the
back-propagation phase, so as to update all perceptrons’ weights applying gra-
dient descent. Once weights updated, a new feed-forward starts using the same
labeled data.

Many solutions have been proposed so as to decide when to stop the train-
ing phase [7]. Among these conditions, one can fix a number of iterations (”aka
epochs”): the MLP will stop once a number of epochs have elapsed. An alter-
native stands in thresholding the training set Mean Squared Error (MSE) (i.e.
MSE between the training set labels and the MLP outputs). The smaller MSE,
the network better performs. Thus the training stops when MSE is smaller than
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Fig. 2: Architecture of a single Perceptron.

a given threshold value. Instead, it has been proposed to use the Training Set
Accuracy; that is the number of correctly classified data over the total number
of data in the training set for an epoch. In this work, we opted for a fix number
of iterations.

Once a MLP model or scheme trained, i.e. once the perceptrons’ weights
known, it can be used in order to classify new data. This classification pro-
cess simply consists in applying the feedforward phase with new data as input,
considering that the MLP output will give the data class.

3 Secure Multilayer Perceptron

3.1 General framework and system architecture

The general framework we consider in this work is given in Fig. 1, where a user
outsourced into the cloud Paillier encrypted data; data on which the user wants
the cloud service provider to train our secure multilayer perceptron (SMLP).
Once trained, this SMLP will be used by the user so as to classify new data. He
will also send encrypted to the cloud. In our view, the data, the classification
data result as well as all the parameters of the SMLP should be unknown from
the cloud. As it can be seen in Fig. 1 and as we will see in the sequel, the
computations of both the SMLP training and classification phases are distributed
over two servers, P1 and P2, of two distinct cloud service providers. We consider
them as honest but curious [16]. More clearly, they will try to infer information
about the data, the classification results as well as about the SMLP parameters.
In our scenario, P1 interacts with the user and stores and handles his data. P2

cooperates with P1 so as to conduct some operations (division, multiplication,
etc ...) involved into the training or classification phases of ours MLP.
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Fig. 3: Example of MultiLayer perceptron (MLP).

3.2 Proposed secure multilayer perceptron

Securing a multilayer perceptron consists in implementing the feedforward and
backward propagation phases over encrypted data. The MLP that we propose to
secure, both in its learning and classification phase, is based on : i) perceptrons,
the activation function of which ReLU, ii) the mean squared error (MSE)as
cost function. The secure version of this MLP, we describe in the following,
works with the Paillier cryptosystem and takes advantage of the above two
servers based system architecture so as to exploit the secure multiplication and
division operators depicted in Section 2. As we will see, different issues have to
be overcome so as to ensure the convergence of such a Secure MLP. In particular,
we propose a new ”Max” function operator so as to secure ReLU.

Secure MLP feed-forward phase The feedforward phase consists in calcu-
lating the MLP output for a given input. Based on the fact a MLP is constituted
of different layers of perceptrons, securing the feed-forward phase relies on secur-
ing each perceptron independently. As seen in Section 2, a perceptron primarily
performs a weighted sum of the input vector X = {xi}i=1...n (see eq. (11)) the
result of which is provided to an activation function (see eq. (12)). Considering
that all pieces of information provided by the user are Paillier encrypted, i.e.
{E[xi]}i=1...n, the weighted sum in the encrypted domain becomes:

E[y] =

n∏
i=0

MulP1,P2
e (E[xi], E[wi]) (13)

where P1 and P2 are the two independent servers (see Fig. 1), E[y] is the secure
weighted sum and {E[wi]}i=1...n the encrypted perceptron weights which are
also confidential.
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In this computation as well as in all others, one important constraint to
consider stands on the fact that the Paillier cryptosystem only works with plain-
text and cipher-text constituted of positive integers in ZKp . More clearly, all data
and parameters of the SMLP should be represented by integers. To overcome
this issue, taking as example the input data, these ones are turned into integer
values by scaling and quantizing them as follow

X = [Qx] (14)

where [.] is the rounding function andQ is an expansion or scaling factor. Beyond,
even if the SMLP parameters and inputs are integers, their processing may lead
to negative values. In order to represent such values in ZKp

, integer values greater
than (Kp + 1)/2 will correspond to negative values and the others to positive
values.

By next, the secure perceptron’s output is computed by applying a secure
version of the ReLU activation function to the secure weighted sum E[y]. One
key issue to overcome in securing ReLU (see eq. (12)) stands in the calculation
of the Max(a, b) function in-between two integer values a and b in the Paillier
encrypted domain. Different solutions have been proposed so as to securely com-
pare encrypted data [5, 12, 15, 22]. Most of them are based on blinding and two
non-colluding parties. However, with all these approaches, the comparison result
is provided in a clear form. More clearly, if P1 asks P2 to compare E[a] and E[b],
P1 will know if E[a] is greater or not than E[b]. In our framework, this leads to
an information leak. Indeed, P1 is not authorized to get some information about
the SMLP parameters. To solve this problem, and to the best of our knowledge,
we propose a novel comparison operator CompP1,P2

e the output of which is en-
crypted. It will be used so as to compute the MaxP1,P2

e operator. CompP1,P2
e

works in two steps:

– Data randomization - P1 selects two random values r and r′ from ZKp
such

as r′ is significantly smaller than r (i.e. r >> r′) and computes computes

E[r(a− b)− r′] = (E[a]E[b]−1)r × E[r′]−1 (15)

Then P1 sends the result to P2.
– Secure comparison - P2 decrypts the data and compare them to 0 and sends

an encrypted bit i such that:

CompP1,P2
e (E[a], E[b]) = E[i] =

{
E[1] if r(a− b)− r′ > 0
E[0] if else

(16)

Then P2 sends E[i] to P1.
Based on CompP1,P2

e (E[a], E[b]), P1 can compute the MaxP1,P2
e operator

MaxP1,P2
e (E[a], E[b]), that is to say.

MaxP1,P2
e (E[a], E[b]) = E[max(a, b)]

= MulP1,P2
e (E[a]E[b]−1, E[i])× E[b]
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= E[i(a− b) + b] =

{
E[a] if i = 1
E[b] if i = 0

(17)

As it can be seen, P1 accesses to the encrypted version of the maximum
value between two integers without knowing which value is greater than the
other one. Such a security level is achieved based on the fact that Paillier
cryptosystem uses random values which multiply after each multiplication
(i.e. E[a, r1]E[b, r2] = E[a + b, r1r2] - see Section 2). Finally, based on the
MaxP1,P2

e operator, the output of a secure ReLU based perceptron is given
by:

E[max(0, y)] = MaxP1,P2
e (E[0], E[y]) (18)

To conclude, a secure MLP is based on secure perceptron layers.

Secure back-propagation phase As stated in Section 3, the objective of the
back-propagation phase is to update the MLP weigths of each perceptron. In the
supervised mode, for a given input, one computes the error between the MLP
output and the input data label according to an objective or cost function. In
this work the Mean Square Error (MSE) is used. Then MLP weights are updated
so as to minimize this function.

Let us consider a MLP network composed of ML layers (see Fig. 3) and an a
priori known vector input data X(0) along with its label t. If X(ML) corresponds
to the MLP output (see Fig. 3), then the error e in the clear domain is such as

e = MSE(X(ML), t) = ||X(ML) − t||22. (19)

This cost function can be expressed in the Paillier encrypted domain under the
following form

E[e] = MulP1,P2
e (E[X(ML) − t], E[X(ML) − t]) (20)

Let us recall, that in our framework, P1 holds E[X(ML)] and E[t]. It computes
E[X(ML)− t] thanks to the homomorphic Paillier proprieties, and interacts with
P2 so as to compute E[e] = MulP1,P2

e (E[X(ML) − t], E[X(ML) − t]) .
Once the error computed, the next step stands in back propagating the error

so as to update the MLP weights of each perceptron (i.e. W = {wi}i=1...n) so as
to minimize the error value e. This update is based on the descent gradient. For
sake of simplicity let us consider a MLP constituted of one single perceptron.
The updated value w

′

i of its weight wi is given by

w
′

i = wi +
1

λ−1
∂e

∂wi

= wi +
1

λ−1
2(t− f(y))xif

′(y)

where y =
∑
i=1..n wi.xi, λ is the learning rate factor, f(.) is the activation

function and t the label of the data placed at the input of the MLP. Notice that,
derivate of the ReLU function is f ′(y) = 1(y>0), where 1(.) denotes the unit
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step function whose value is zero for negative input or one, otherwise. The same
update operation in the encrypted domain, is

E[w
′

i] = E[wi]Div
P1,P2
e (E[

∂e

∂wi
], λ) (21)

with

E[
∂e

∂wi
] = MulP1,P2

e (E[t]−1E[f(y)], E[xi]
2, E[1(y>0)]) (22)

It is important to underline that the encrypted version of the unit step function
E[1(y>0)] is equivalent to E[1(y>0)] = CompP1,P2

e (E[0], E[y]).
In the case of a MLP network of ML layers, with a set of labeled input

data T = {X(0)
i , ti}i=1...K , where K is the size of the training set and the error

function for each input is

eti = ||ti −X(ML)
i ||2 (23)

Herein, eti depends on the weights of all MLP layers. The descent gradient
can be computed with the help of the chain rule algorithm so as to calculate
all partial derivatives, even those of intermediary layers. According to this algo-
rithm, the last layer gradient is given as

∂eti

∂W
(ML)
i

= δ(ML).trX
(ML−1)
i = (X

(ML)
i − ti) ∗ f ′(W (ML)

i X
(ML−1)
i ).trX

(ML−1)
i

(24)
where the operator ∗ denotes the product element wise (aka Hadamard product).
The gradient computation for any hidden layer l is recursively defined as

∂eti

∂W
(l)
i

= δ
(l)
i .trX

(l−1)
i

= W
(l+1)
i δ

(l+1)
i ∗ f ′(W (l)

i X
(l−1)
i ).trX

(l−1)
i

where tr indicate the transpose vector.
As a consequence the update of each layer weight is given as

W
(l)
i = W

(l)
i +

1

λ−1
∂eti

∂W
(l)
i

(25)

where λ is the global learning rate factor. The back-propagation phase in the en-
crypted domains can be easily derived, and the update version of a a perceptron
layer l is given by

E[
∂eti

∂W
(l)
i

] = MulP1,P2
e (E[δ

(l+1)
i ], E[.trX

(l−1)
i ])

= MulP1,P2
e (E[W

(l+1)
i ], E[δ

(l+1)
i ] ∗e E[f ′(W

(l)
i ], E[X

(l−1)
i )], E[.trX

(l−1)
i ])
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where the ∗e operator is the secure version of the element wise multiplication ∗
defined as for two vectors of the same size n

E[u] ∗ E[v] = (MulP1,P2
e (E[u1], E[v1]), ...,MulP1,P2

e (E[un], E[vn])) (26)

By iteratively applying the secure feedforward and back-propagation phases, it
is possible to train our Secure MLP without compromising the security of the
input data and of the SMLP parameters. It is the same when classifying new
data. The services class providers will have no idea of the MLP output.

Fig. 4: SMLP architecture used to learning the AND function

4 Experimental results and security analysis

The proposed SMLP solution has been implemented so as to learn the And −
Logic function in a supervised training mode. This function takes as input two
real numbers x1 and x2 in the interval [0, 1] and its output is a binary value such
that:

y = [x1]AND[x2] (27)

where [.] denotes the rounding operator.

4.1 Dataset and MLP architecture

The training data set is constituted of 10000 lines of three columns each, where
each line represents a training input sample. The first two columns contain two
real values between 0.0 and 1.0, while the last column contains their AND value.

Fig. 4 provides the architecture of the implemented SMLP. It is composed
of an input layer and of two hidden layers, both containing two perceptrons,
followed by an output layer of one perceptron. As stated above, the network is
based on our secure ReLU activation function (see section 3). In all following
test, the expansion factor Q was fixed to 106 so as to ensure the SMLP works
with integer values with a training phase limited to 100 epochs 2000 samples of
the training data set are used for the learning phase and the 8000 other for the
testing phase. The expected result is that, upon the entry of two values contained
between 0.0 and 1.0, the activation of the output layer after feedforward contains
the value of the AND between the two inputs, that is, either 0 or 1.
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4.2 Secure MLP performance

The performance of our secure MLP, which is expressed in terms of classifica-
tion accuracy and also convergence, depends on the learning rate. Precision is
the number of correct predictions made divided by the total number of predic-
tions made. We recall that the learning rate factor λ plays a critical role in the
convergence of the network. Indeed, it influences the modification step in the
weight update in the back-propagation phase (see Section 3). We tested several
λ values in the range [10−12; 10−4]. We give in Table 1, the precision of our SMLP
in average after 10 tries, and if yes or no it has converged after the training. It
can be seen that SMLP converges for values of λ smaller than λ = 10−8. We
thus recommend taking initial weights distributed in the range [10−5, 105] and
a learning rate factor λ = 10−10.

Table 1: Convergence and precision of our SMLP for different learning rate factor
values.

λ 10−12 10−10 10−8 10−6 10−4

Convergence (Y/N)/Accuracy Yes/72% Yes/83% Yes/93.1% No No

We also have trained the equivalent MLP in the clear domain under the same
conditions with a learning rate factor of 0.005 and 100 epochs. The obtained
MLP precision is about 98.3% with of course no convergence issues. It can be
seen based on Table 1, that SMLP always provides lower performance. This can
be explained by the use of an expansion factor so as to convert real values into
integer values. Anyway, these results demonstrate it is possible to train a MLP
in a secure outsourced way.

4.3 Security analysis under the semi-honest model

The following analysis considers the semi-honest cloud adversary model as pre-
sented in Section 3. Due to the fact all data (i.e. input data and SMLP pa-
rameters) are encrypted with the Paillier cryptosystem the security of which has
been demonstrated in [18], the security of the feed-forward and back-propagation
phases stands on the security of the operators MulP1,P2

e (.), DivP1,P2
e (.) and

CompP1,P2
e (.).

– Security of MulP1,P2
e (.) - As shown in Section 2, MulP1,P2

e (E[a], E[b]) relies
on a data blinding operation P1 applies on E[a] and E[b] to compute E[a×b].
To do so, P1 generates two random values ra and rb from ZKp

and computes
E[a + ra] and E[b + rb]. P2 decrypts by next these values. Since ra and rb
are randomly chosen in ZKp and only known from P1, they give no clues to
P2 regarding a and b.

– Security of DivP1,P2
e (.) - We let the reader refer to [21], where Thijs Veugen

proved the security of the operator DivP1,P2
e (.).



14 R. Bellafqira et al.

– Security of CompP1,P2
e (.) - and consequently of MaxP1,P2

e (., .) As explained in
Section 3,MaxP1,P2

e (E[a], E[b]) = E[max(a, b)] depends on the CompP1,P2
e (; )

operator. Let us consider P1 possesses the couple (E[a], E[b]) and that he
wants to compute MaxP1,P2

e (E[a], E[b]). To do so, it computes E[r(a−b)−r′]
where r and r′ are chosen uniformly from ZKp

under the constraint that
r >> r′. P2 accesses to r(a− b)− r′ from which it cannot deduce any infor-
mation about a and b nor about a − b since it does not know r and r′. P2

compares this value to zero. This comparison gives not more information to
P2.
By next, in order to avoid that P1 knows the comparison result, P2 encrypts
using the user public key the bit 0 or 1 (see Section 3) it sends to P1. P1

can derive the results of the function MaxP1,P2
e (E[a], E[b]), because all these

computation are conducted over encrypted data, P1 has no idea about a, b
and Max(a, b).
The rest of the computations (e.g. MSE, error derivatives) are based on
either encrypted or randomized data. As consequence, if P1 and P2 do not
collude, no information related to the user data or to the SMLP model
is disclosed. Since all operations involved in the computation of the feed-
forward and back-propagation phases are in cascade then, according to the
sequential Composition theorem [14], SMLP is completely secure under the
semi-honest model.

5 Conclusion

In this paper, we have proposed a new Secure Multilayer Perceptron (SMLP)
which can be deployed in the cloud. Its main originality, compared to actual
homomorphic encryption based SMLP schemes, is that it can be trained with
homomorphically encrypted data with no extra communications between the
user and the servers. With this scheme, all data, input data, SMLP output and
its parameters, are encrypted. Our SMLP is based on: an original secure version
of the Max(., .) function we propose, the result of which is encrypted; a ReLU
activation function secured with no linear approximation. Such a SMLP has been
implemented so as to learn or model the AND function in-between real values.
Experimental results demonstrate that SMLP converges in its training phase
under some parameter initialization constraints. Beyond the complexity of our
SMLP, which is based on homomorphic encryption, these preliminary results are
very encouraging.
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