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Abstract. The problem of computing induced subgraphs that satisfy
some specified restrictions arises in various applications of graph algo-
rithms and has been well studied. In this paper, we consider the follow-
ing Balanced Connected Subgraph (shortly, BCS) problem. The input is
a graph G = (V,E), with each vertex in the set V having an assigned
color, “red” or “blue”. We seek a maximum-cardinality subset V ′ ⊆ V
of vertices that is color-balanced (having exactly |V ′|/2 red nodes and
|V ′|/2 blue nodes), such that the subgraph induced by the vertex set
V ′ in G is connected. We show that the BCS problem is NP-hard, even
for bipartite graphs G (with red/blue color assignment not necessarily
being a proper 2-coloring). Further, we consider this problem for vari-
ous classes of the input graph G, including, e.g., planar graphs, chordal
graphs, trees, split graphs, bipartite graphs with a proper red/blue 2-
coloring, and graphs with diameter 2. For each of these classes either we
prove NP-hardness or design a polynomial time algorithm.

Keywords: Balanced connected subgraph · Trees · Split graphs · Chordal
graphs · Planar graphs · Bipartite graphs · NP-hard · Color-balanced.

1 Introduction

Several problems in graph theory and combinatorial optimization involve de-
termining if a given graph G has a subgraph with certain properties. Exam-
ples include seeking paths, cycles, trees, dominating sets, cliques, vertex covers,
matching, independent sets, bipartite subgraphs, etc. Related optimization prob-
lems include finding a maximum clique, a maximum (connected) vertex cover, a
maximum independent set, a minimum (connected) dominating set, etc. These
well-studied problems have significant theoretical interest and many practical
applications.
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In this paper, we consider the problem in which we are given a simple con-
nected graph G = (V,E) whose vertex set V has each node being “red” or “blue”
(note, the color assignment might not be a proper 2-coloring of the vertices, i.e.,
we allow nodes of the same color to be adjacent in G). We seek a maximum-
cardinality subset V ′ ⊆ V of the nodes such that V ′ is color-balanced, i.e. having
same number of red and blue nodes in V ′, and such that the induced subgraph
H by V ′ in G is connected. We refer to this problem as the Balanced Connected
Subgraph (BCS) problem:

Balanced Connected Subgraph (BCS) Problem
Input: A graph G = (V,E), with node set V = VR ∪ VB partitioned into
red nodes (VR) and blue nodes (VB).
Goal: Find a maximum-cardinality color-balanced subset V ′ ⊆ V that in-
duces a connected subgraph H .

Notice that, the BCS problem is a special case of the Maximum Node Weight
Connected Subgraph (MNWCS) problem [21]. In the MNWCS problem, we are
given a connected graph G(V,E), with a (possibly negative) integer weight w(v)
associated with each node v ∈ V , and an integer bound B; the objective is to
decide whether there exists a subset V ′ ⊆ V such that the subgraph induced
by V ′ is connected and the total weight of the vertices in V ′ is at least B. In
the MNWCS problem, if we assign the weight of each vertex is either +1 (red)
or −1 (blue), then deciding whether there exist a V ′ ⊆ V such that |V ′| ≥ k,
subgraph induced by V ′ in G is connected and total of vertices in V ′ is exactly
zero is equivalent as the BCS problem. The MNWCS problem along with its
variations have numerous practical application in various fields. This includes
designing fiber-optic networks [18], oil-drilling [20], systems biology [3,13,25],
wildlife corridor design [12], computer vision [8,9], forest planning [7], and many
more (see [16] and the references therein). Some of these applications are best
suited to the BCS problem.

1.1 Related work

The bichromatic inputs, often referred in the literature as red-blue input, has ap-
peared extensively in numerous problems. For bipartite trees, see [1]. In [6,14,15]
colored points have been considered in the context of matching and partitioning
problem. For a detailed survey on geometric problems with red-blue points; see
[22]. In [2], Aichholzer et al. considered the balanced island problem and devised
polynomial algorithms for points considered on plane. From combinatorial side,
Balanchandran et al. [4] studied the problem of unbiased representatives in a set
of bicolorings. In this paper, they have mentioned the usefulness of the unbiased
representatives in drug testing. While the drugs are tested over a large popula-
tion, the effectiveness of a new drug is measured under various attributes e.g.,
weight, height, age etc. One would require to sample representative in certain
balanced manner. Kaneko et al. [23] considered the problem of balancing the
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colored points on the line. Subsequently, Bereg et al. [5] studied the balanced
partitions of 3-colored geometric sets on the plane.

On the other hand, finding a certain type of subgraph in a graph is considered
to be a fundamental algorithmic question. In [17], Feige et al. studied the dense
k-subgraph problem where given a graph G and a parameter k, the goal is to
find a set of k vertices with maximum average degree in the subgraph induced by
this set. From parameterized algorithms side, Crowston et al. [10] considered the
balanced subgraph problem. Kierstead et al. [24] studied the problem of finding
colorful induced subgraph in a properly colored graph. This led us to study the
balanced connected subgraph problem on graphs. In [11], Derhy and Picouleau
considered the problem of finding induced trees on both weighted and unweighted
graphs and obtained hardness and algorithmic results. They have studied some
particular classes of graphs like the bipartite graphs or the triangle-free graphs.
Moreover, they have considered the case where the number of prescribed vertices
is bounded.

1.2 Our contributions

In this paper, we consider the balanced connected subgraph problem on various
graph families and present several hardness and algorithmic results.

On the hardness side, in Section 2, we prove that the BCS problem is NP-
hard on general graphs, even for planar graphs, bipartite graphs (with a gen-
eral red/blue color assignment, not necessarily a proper 2-coloring), and chordal
graphs. Furthermore, we show that the existence of a balanced connected sub-
graph containing a specific vertex is NP-complete. In addition to that, we prove
that finding the maximum balanced path in a graph is NP-hard.

On the algorithmic side, in Section 3, we devise polynomial-time algorithms
for trees (in O(n4) time), split graphs (in O(n2) time), bipartite graphs with a
proper 2-coloring (in O(n2) time), and graphs with diameter 2 (in O(n2) time).
Here n is the number of vertices in the input graphs.

2 Hardness results

2.1 BCS problem

In this section we prove that the BCS problem is NP-hard for bipartite graph
with a general red/blue color assignment, not necessarily a proper 2-coloring.
We give a reduction from the Exact-Cover-by-3-Sets (EC3Set) problem [19]. In
this EC3Set problem, we are given a set U with 3k elements and a collection
S of m subsets of U such that each si ∈ S contains exactly 3 elements. The
objective is to find an exact cover for U (if exists), i.e., a sub-collection S′ ⊆ S
such that every element of U occurs in exactly one member of S′. During the
reduction, we generate an instance G = (R ∪ B,E) of BCS problem from an
instance X(S,U) of the EC3Set problem as follows:
Reduction: For each set si ∈ S, we take a blue vertex si ∈ B. For each element
uj ∈ U , we take a red vertex uj ∈ R. Now consider a set si ∈ S which contains
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three elements uα, uβ, and uγ , then we add 3 edges (si, uα), (si, uβ), and (si, uγ)
in E. Additionally, we consider a path of 5k blue vertices starting and ending
with vertices b1 and b5k respectively. Similarly, we consider a path of 3k red
vertices starting and ending with vertices r1 and r3k respectively. We connect
these two paths by joining the vertices r3k and b1 by an edge. Finally, we connect
each vertices si with b5k by edges. This completes the construction. See Figure
1 for the complete construction.

Fig. 1. Construction of the instance G of the BCS problem.

Clearly, the number of vertices and edges in G are polynomial in terms of
number of elements and sets in X . Hence the construction can be done in poly-
nomial time. We now prove the following theorem.

Lemma 1. The instance X of the EC3Set problem has a solution if and only
if the instance G of the BCS problem has a connected balanced subgraph T with
12k vertices (6k red and 6k blue).

Proof. Assume that EC3Set problem has a solution. Let S∗ be an optimal solu-
tion in it. We choose the corresponding vertices of S∗ in T . Since this solution
covers all uj’s. So we select all uj ’s in T . Finally we select all the 5k blue and
3k red vertices in T , resulting in a total of 6k red and 6k blue vertices.

On the other hand, assume that there is a balanced tree T in G with 6k
vertices of each color. The solution must pick the 5k blue vertices b1, . . . , b5k.
Otherwise, it exclude the 3k red vertices r1, . . . , r3k, and reducing the size of
the solution. Since the graph G has at most 6k red vertices, at most k vertices
can be picked from the set s1, . . . , sm and need to cover all the 3k red vertices
corresponding to uj for 1 ≤ j ≤ 3k. Hence, this k sets give an exact cover. ⊓⊔
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It is easy to see that the graph we constructed from the Exact-Cover-by-3-
Sets (EC3Set) problem in Figure 1 is indeed a bipartite graph. Hence we have
the following theorem.

Theorem 1. BCS problem is NP-hard for bipartite graphs.

2.2 NP-hardness: BCS problem over special classes of graphs

In this section, we show that the BCS problem is NP-hard even if we restrict
the graph classes to chordal, or planar graphs.

Chordal graphs: We prove that the BCS problem is NP-hard where the input
graph is a chordal graph. The hardness construction is similar to the construc-
tion in Section 2.1; we modify the construction so that the graph is chordal. In
particular, we add edges between si and sj for each i 6= j, 1 ≤ i, j ≤ m. For
this modified graph, it is easy to see that a lemma identical to Lemma 1 holds.
Hence, we conclude that the BCS problem is NP-hard for chordal graphs.

Planar graphs: In this section we prove that BCS problem is NP-hard for
planar graphs. We give a reduction from the Steiner tree problem in planar
graphs (STPG) [19]. In this problem, we are given a planar graph G = (V,E),
a subset X ⊆ V , and a positive integer k ∈ N. The objective is to find a tree
T = (V ′, E′) with at most k edges such that X ⊆ V ′.

Reduction: We generate an instance H = (R ∪ B,E(H)) for the BCS problem
from an instance G = (V,E) of the STPG problem. We color all the vertices in
G as blue. We now create red color vertices and connect to these vertices. For
each vertex ui ∈ X , we add a vertex u′

i in H whose color is red add connect u′

i

to ui via an edge. Additionally, we take a set Z of (k+1−|X |) red vertices in H
and the edges (zj, u

′

1) into E(H), for each zj ∈ Z. Hence we have, B = V , and
R = Z∪{u′

i}| 1 ≤ i ≤ |X |}. Note that |R| < |B| and |R| = (k+1). This completes
the construction. For an illustration see Figure 2. Clearly the number of vertices
and edges in H are polynomial in terms of vertices in G. Hence the construction
can be done in polynomial time. We now prove the following theorem.

Theorem 2. STPG has a solution if and only if H of the BCS problem has a
balanced connected subgraph with (k + 1) vertices of each color.

Proof. Assume that STPG has a solution. Let T = (V ′, E′) be the resulting
Steiner tree which contains at most k edges and X ⊆ V ′. If |V ′| = (k + 1) then
the subgraph of H induced by (V ′ ∪R) is connected and balanced with (k + 1)
vertices of each color. If |V ′| < (k+1) then we take a set Y of ((k+1)−|V ′|) many
vertices from V such that the subgraph of G induced by (V ′ ∪ Y ) is connected.
Clearly |V ′| = (k + 1). Now the subgraph of H induced by (V ′ ∪ Y ∪ R) is
connected and balanced with (k + 1) vertices of each red and blue color.
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Fig. 2. Schematic construction for planar graphs.

On the other hand, assume that there is a balanced connected subgraph H ′

of H with (k + 1) vertices of each color. Note that, except vertex u′

1, in H all
the red vertices are of degree 1 and connected to blue vertices. Let G′ be the
subgraph of G induced by all blue vertices in H ′. Since H is connected and
there is no edge between any two red vertices, G′ is connected. Since G′ contains
(k + 1) vertices, any spanning tree T of H ′ contains k edges. So T is a solution
of STPG problem. ⊓⊔

Hence we have the following theorem.

Theorem 3. BCS problem is NP-hard for planar graphs.

2.3 NP-completeness for BCS problem for a specific vertex.

In this section we prove that the existence of a balanced subgraph containing a
specific vertex is NP-complete. We call this problem the BCS -existence problem.
The reduction is similar to the reduction used in showing the NP-hardness of
the BCS problem; we also use here a reduction from the EC3Set problem (see
Section 2.1 for the definition).
Reduction: Assume that we are given a EC3Set problem instance X = (U, S),
where set U contains 3k elements and a collection S of m subsets of U such that
each si ∈ S contains exactly 3 elements. We generate an instance G(R,B,E)
of the BCS -existence problem from X as follows. The red vertices R are the
elements uj ∈ U ; i.e., R = U . The blue vertices B are the 3-element sets si ∈ S;
i.e., B = S. For each blue vertex si = {uα, uβ, uγ} ∈ S = B, we add the 3
edges (si, uα), (si, uβ), and (si, uγ) to the set E of edges of G. We instantiate an
additional set of 2k blue vertices, {b1, . . . , b2k}, and add edges to E to link them
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into a path (b1, b2, . . . , b2k). Finally, we add an edge from b2k to each of the blue
vertices si. Refer to Figure 3.

Fig. 3. Construction of the instance G of the BCS problem containing b1.

Clearly, the number of vertices and edges in G are polynomial in terms of
number of elements and sets in the size of the EC3Set problem instance X , and
the construction can be done in polynomial time. We now prove the following
lemma.

Lemma 2. The instance X of the EC3Set problem has a solution iff the in-
stance G of the corresponding BCS existence problem has a balanced subgraph T
containing the vertex b1.

Proof. Assume that the EC3Set problem has a solution, and let S∗ be the collec-
tion of k = |S∗| sets of S in the solution. Then, we obtain a balanced subgraph
T that contains b1 as follows: T is the induced subgraph of the 3k red vertices
U , together with the k blue vertices S∗ and the 2k blue vertices b1, . . . , b2k. Note
that T is balanced and connected and contains b1.

Conversely, assume there is a balanced connected subgraph T containing b1.
Let t be the number of (blue) vertices of S within T . First, note that t ≤ k.
(Since T is balanced and contains at most 3k red vertices, it must contain at
most 3k blue vertices, 2k of which must be {b1, . . . , b2k}, in order that T is
connected.) Next, we claim that, in fact, t ≥ k. To see this, note that each of the
t blue vertices of T that corresponds to a set in S is connected by edges to 3 red
vertices; thus, T has at most 3t red vertices. Now, T has 2k+t blue vertices (since
it has t vertices other than the path (b1, . . . , b2k)), and T is balanced; thus, T
has exactly 2k+ t red vertices, and we conclude that 2k+ t ≤ 3t, implying k ≤ t,
as claimed. Therefore, we need to select exactly k blue vertices corresponding
to the sets S, and these vertices connect to all 3k of the red vertices. The k sets
corresponding to these k blue vertices is a solution for the EC3Set problem. ⊓⊔
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It is easy to prove that the BCS existence problem is in NP. Hence, we have
the following theorem.

Theorem 4. It is NP-complete to decide if there exists a connected balanced
subgraph that contains a specific vertex.

2.4 NP-hardness: balanced connected path problem

In this section we consider the balanced connected path (BCP) Problem and
prove that it is NP-hard. In this problem instead of finding a balanced connected
subgraph, our goal is to find a balanced path with a maximum cardinality of
vertices. To prove the BCP problem is NP-hard we give a polynomial time
reduction from the Hamiltonian Path (Ham-Path) problem which is known to
be NP-complete [19]. In this problem, we are given an undirected graph Q, and
the goal is to find a Hamiltonian path in Q i.e., a path which visits every vertex in
Q exactly once. In the reduction we generate an instance G of the BCP problem
from an instance Q of the Ham-Path problem as follows:
Reduction: We make a new graph Q′ from Q. Let us assume that the graph
Q contains m vertices. If m is even then Q′ = Q. If m is odd, then we add a
dummy vertex u in Q and connect to every other vertices in Q by edges with
u. The resulting graph is our desired Q′. It is easy to observe that, Q has a
Hamiltonian path if and only if Q′ has a Hamiltonian path.

Now we have a Ham-Path instance Q′ with even number of vertices, say n.
We arbitrary choose any n/2 vertices in Q′ and color them red and color the
remaining n/2 vertices blue. Let G be the colored graph.

This completes the construction. Clearly, this can be done in polynomial
time. We now have the following lemma.

Lemma 3. Q′ has a Hamiltonian path T if and only if G has a balanced path
P with exactly n vertices.

Proof. Assume that Q′ has a Hamiltonian path T . This implies that, T visits
every vertex in Q′. Since by the construction there are exactly half of the vertices
in G is red and remaining are blue, the same path T is balanced with n/2 vertices
of each color.

On the other hand, assume that there is a balanced path P in G with exactly
n/2 vertices of each color. Since, G has a total of n vertices, the path P visits
every vertex in G. Hence, P is a Hamiltonian path. ⊓⊔

Therefore, we have the following theorem.

Theorem 5. BCP problem is NP-hard for general graph.

3 Algorithmic results

In this section, we consider several graph families and devise polynomial time
algorithms for the BCS problem. Notice that, if the graph is a path or cycle, the



The Balanced Connected Subgraph Problem 9

optimal solution is just a path. Hence, one can do brute-force search to obtain the
maximum balanced path. In case of a complete graphKn, we output a sub-graph
H of Kn induced by V , where |V | = 2|B|, B ⊂ V , and B is the set of all blue
vertices in Kn (assuming that, the number of blue vertices is at most the number
of red vertices inKn). Clearly,H is the maximum-cardinality balanced sub-graph
in Kn. We consider trees, split graphs, bipartie graphs (properly colored), graphs
of diameter 2, and present polynomial algorithms for each of them.

3.1 Trees

In this section we give a polynomial time algorithm for the BCS problem where
the input graph is a tree. We first consider the following problem.
Problem 1: Given a tree T = (V,E), and a root t ∈ V where V = VR ∪ VB .
The vertices in VR and VB are colored red and blue,respectively. The objective
is to find maximum balanced tree with root t.

We now design an algorithm to solve this problem. Let v be a vertex in G.
We associate a set Pv of pairs of the form (r, b) to v, where r is the count of red
vertices and b is the count of blue vertices. A single pair (r, b) associated with
vertex v indicates that there is a subtree rooted at v having r red and b blue
vertices. Note that r may not be equal to b. Now for any k pairs, the sum is also a
pair which is defined as the element-wise sum of these k pairs. Let A1, A2, . . . , Ak

be k sets. The Minkowski sum M
∑k

i=1
Ai denotes the set of sums of k elements

one from each set Ai i.e.,
M

∑k

i=1
Ai = A1 ⊕A2 ⊕ . . .⊕Ak. We use ⊕ to denote

Minkowski sum between sets. For example, for the Minkowski sum of the sets A
and B, we write A⊕B and it means A⊕B = {a+ b : a ∈ A, b ∈ B}.

Now we are ready to describe the algorithm to solve Problem 1. In Algorithm
1, we describe how to get maximum balanced subtree with root t for a tree T
rooted at t.

Algorithm 1: Construct red-blue pair-sets in a rooted tree.

Input : (i) A rooted tree T = (B ∪R,E) with root t.
(ii) B and R are colored blue and red respectively.

Output: A set of pairs at each node in T .

1 if v is a leaf with red color then
2 Pv = {(0, 0), (1, 0)};
3 if v is a leaf with blue color then
4 Pv = {(0, 0), (0, 1)};
5 if v be a vertex with red color and v has k children u1, u2, ..., uk in T

with root at r, then

6 Pv = {(0, 0)} ∪ {M
∑k

i=1
Pui

⊕ {(1, 0)}};
7 if v be a vertex with blue color and v has k children u1, u2, ..., uk in T

with root at r, then

8 Pv = {(0, 0)} ∪ {M
∑k

i=1
Pui

⊕ {(0, 1)}}; // Here ⊕ denotes

Minkowski Set sum.

9 return Pt
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In Algorithm 1 we compute a finite set Pt of pairs {(r, b)} at the root t in T .
To do so, we recursively calculate the set of pairs from leaf to the root. For an
internal vertex v, the set Pv is calculated as follows: let the color of v is red and
it has k children u1, u2, . . . , uk. Then, Pv = {(0, 0)} ∪ {M

∑k

i=1
Pui

⊕ {(1, 0)}}.
We now prove the following lemma.

Lemma 4. Let T be rooted tree with t as a root. Then Algorithm 1 produces all
possible balanced subtree rooted at t in O(n6) time.

Proof. Notice that in Algorithm 1, at each node v ∈ T , we store a set Pv of pairs
{(ri, bi)}, where each (ri, bi) indicates that there exists a subtree T ′ with root
v such that number of red and blue vertices in T ′ are ri and bi, respectively.
Note that ri may not be same as bi. When we construct the set Pv, all the sets
corresponding to its children are already calculated. Finally, in steps 6 and 8
of Algorithm 1 we calculate the set Pv based on the color of v. Hence, when
Algorithm 1 terminates, we get the set Pt where t is the root of T .

Now we calculate the time taken by Algorithm 1. Clearly, steps 2 and 4 take
O(1) time to construct the pv when v is a leaf. Note that, the size of Pv, for an
internal node v is O(n2). Since there are at most n blue and red vertices in the
subtree rooted at v. If v has k children then we have to take Minkowski sum
of the sets corresponds to the children of v. To get the sum of two sets it takes
O(n4) time. As there are at most n children of node v, so the time taken by
steps 6 and 8 are O(n5). Finally, we traverse the tree from bottom to the root.
Hence, the total time taken by the algorithm is O(n6). ⊓⊔

We can now improve the time complexity by slightly modifying the Algorithm
1. For an internal vertex v, we actually don’t need all the pairs to get the
maximum balanced subtree. Suppose there are two pairs (a, b) and (c, d) in Pv,
where (b − a) = (d− c) and a < c. Then, instead of using the subtree with pair
(a, b), it is better to use the subtree with pair (c, d), since it may help to construct
a larger balance subtree. Therefore, in a set Pv if there are k pairs {(ai, bi); 1 ≤
i ≤ k} such that (bi − ai) = (bj − aj) whenever i 6= j, 1 ≤ i, j ≤ k. Then we
remove the (k−1) pairs and store only the pair which is largest among all these k
pairs. We say (am, bm) is largest when am > ai and bm > bi for 1 ≤ i ≤ k, i 6= m.
So we reduce the size of Pv for each vertex v ∈ T from O(n2) to O(n). Let T (n)
be the time to compute red-blue pairset for the root vertex t in the tree T with
size n. If r has k children u1, u2, ..., uk with size n1, n2, ..., nk. Then the recurrence
is T (n) = T (n1)+T (n2) + ...+ T (nk) +O(

∑k−1

i=1
(n1 + n2 + · · ·+ ni)ni+1). Now∑k−1

i=1
(n1+n2+ . . . ni)ni+1 ≤

∑k−1

i=1
nni+1 = n

∑k−1

i=1
ni+1 ≤ n2. which gives the

solution that T (n) = O(n3).
Hence, we conclude the following lemma.

Lemma 5. Let T be rooted tree with t as a root. We can produces all possible
balanced subtree rooted at t in O(n3) time and O(n2) space complexity.

Optimal solution for BCS problem in tree

If there are n nodes in the tree T , then, for each node vi, 1 ≤ i ≤ n, we consider T
to be a tree rooted at vi. We then apply Algorithm 1 to find maximum-cardinality
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balanced subtree rooted at vi; let Ti be the resulting balanced subtree, havingmi

vertices of each color. Then, to obtain an optimal solution for the BCST problem
in T we choose a balanced subtree that has max{mi; 1 ≤ i ≤ n} vertices of each
color. Now we can state the following theorem.

Theorem 6. Let T be a tree whose n vertices are colored either red or blue.
Then, in O(n4) time and O(n2) space, one can compute a maximum-cardinality
balanced subtree of T .

3.2 Split graphs

A graph G = (V,E) is defined to be a split graph if there is a partition of V
into two sets S and K such that S is an independent set and K is a complete
graph. There is no restriction on edges between vertices of S and K. Here we
give a polynomial time algorithm for the BCS problem where the input graph
G = (V,E) is a split graph. Let S and K be two disjoint partition of V where
S is an independent set and K is a complete graph. Also, let SB and SR be
the sets of blue and red vertices in S, respectively. Similarly, let KB and KR be
the sets of blue and red vertices in K, respectively. We argue that there exists a
balanced connected subgraph in G, having min{|SB ∪KB|, |SR ∪KR|} vertices
of each color.

Note that if |SB ∪KB| = |SR ∪KR| then G itself is balanced. Now, w.l.o.g.,
we can assume that |SB ∪KB| < |SR ∪KR|. We will find a connected balanced
subgraph H of G, where the number of vertices in H is exactly 2|SB ∪KB|. To
do so, we first modify the graph G = (V,E) to a graph G′ = (V,E′). Then, from
G′, we will find the desired balanced subgraph with |SB ∪KB| many vertices of
each color. Moreover, this process is done in two steps.

Step 1: Construct G′ = (V,E′) from G = (V,E).
For each u ∈ SB , if u is adjacent to at least a vertex u′ in KR, then remove
all adjacent edges with u except the edge (u, u′). Similarly, for each v ∈ SR,
if v is adjacent to at least a vertex v′ in KB, then remove all adjacent edges
with v except the edge (v, v′).

Step 2: Delete |SR ∪KR| − |SB ∪KB| vertices from G′.
Let k = |SR ∪KR| − |SB ∪KB|. Now we we have following cases.

Case 1: |SR| ≥ k. We remove k vertices from SR in G′. Clearly, after this
modification, G′ is connected, and we get a balanced subgraph having
|SB ∪KB| vertices of each color.

Case 2: |SR| < k. Then we know, |KR| > |KB ∪ SB|. Let S
′

B ⊆ SB be the
set of vertices in G′ such that each vertex of S′

B has exactly one neighbor
in KR. Then, we take a set X ⊂ KR with cardinality |KB ∪ SB| such
that X contains all adjacent vertices of S′

B. Now we take the subgraph
H of G′ induced by (SB ∪KB ∪X). H is optimal and balanced.

Running time: Step 1 takes O(|E|) time to construct G′ from G. Now in step 2,
both Case 1 and Case 2 take O(|V |) time to delete |SR∪KR|−|SB∪KB| vertices
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from G′. Hence, the total time taken is O(n2), where n is the number of vertices
in G. We conclude in the following theorem.

Theorem 7. Given a split graph G of n vertices, with r red and b blue (n = r+b)
vertices, then, in O(n2) time we can find a balanced connected subgraph of G
having min{b, r} vertices of each color.

3.3 Bipartite graphs, properly colored

In this section, we describe a polynomial-time algorithm for the BCS problem
where the input graph is a bipartite graph whose nodes are colored red/blue
according to proper 2-coloring of vertices in a graph. We show that there is a
balanced connected subgraph of G having min{b, r} vertices of each color where
G contains r red vertices and b blue vertices. Note that we earlier showed that
the BCS problem is NP-hard in bipartite graphs whose vertices are colored
red/blue arbitrarily; here, we insist on the coloring being a proper coloring (the
construction in the hardness proof had adjacent pairs of vertices of the same
color). We begin with the following lemma.

Lemma 6. Consider a tree T (which is necessarily bipartite) and a proper 2-
coloring of its nodes, with r red nodes and b blue nodes. If r < b, then T has at
least one blue leaf.

Proof. We prove it by contradiction. Let there is no blue leaf. Now assign any
blue node say br as a root. Note that it always exists. Now br is at level 0 and
br has degree at least 2. Otherwise, br is a leaf with blue color. We put all the
adjacent vertices of br in level 1. This level consists of only red vertices. In level 2
we put all the adjacent vertices of level 1. So level 2 consists of only blue vertices.
This way we traverse all the vertices in T and let that we stop at kth-level. k
cannot be even as all the vertices in even level are blue. So k must be odd. Now
for each 0 6 i 6 k−1

2
, in the vertices of (level 2i ∪ level (2i+1)), number of blue

vertices is at most the number of red vertices. Which leads to the contradiction
that r < b. Hence there exists at least one leaf with blue color. ⊓⊔

We are now ready to describe the algorithm. We first find a spanning tree T
in G. If r = b then T itself is a maximum balanced subtree (subgraph also) of
G. Without loss of generality assume that r < b. So by Lemma 6, T has at least
1 blue vertex. Now we remove that blue vertex from T . Using similar reason, we
repetitively remove (b − r) blue vertices from T . Finally, T becomes balanced
subgraph of G, with r many vertices of each color.

Running time: Finding a spanning tree in G requires O(n2) time. To find all
the leaves in the tree T requires O(n2) time (breadth first search). Hence the
total time is needed is O(n2).

Now, we state the following theorem.

Theorem 8. Given a bipartite graph G with a proper 2 coloring (r red or b blue
vertices), then in O(n2) time we can find a balanced connected subgraph in G
having min{b, r} vertices of each color.
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3.4 Graphs of diameter 2

In this section, we give a polynomial time algorithm which solves the BCS -
problem where the input graph has diameter 2. Let G(V,E) be such a graph
which contains b blue vertex set B and r red vertex set R. We find a balanced
connected subgraph H of G having min{b, r} vertices of each color. Assume that
b < r. This can be done in two phases. In phase 1, we generate an induced
connected subgraph G′ of G such that (i) G′ contains all the vertices in B, and
(ii) the number of vertices in G′ is at most (2b− 1). In phase 2, we find H from
G′.

Phase 1 To generate G′, we use the following result.

Lemma 7. Let G = (V,E) be a graph of diameter 2. Then for any pair of
non adjacent vertices u and v from G, there always exists a vertex w such
that both (u,w) ∈ E and (v, w) ∈ E.

We first include B in G′. Now we have the following two cases.
Case 1: The induced subgraph G[B] of B is connected. In this case,

G′ is G[B].
Case 2: The induced subgraph G[B] of B is not connected. Assume

that G[B] has k(> 1) components. Let B1, B2, ..., Bk be k disjoints sets of
vertices such that each induced subgraph G[Bi] of Bi in G is connected.
Now using Lemma 7, any two vertices vi ∈ Bi and vj ∈ Bj are adjacent
to a vertex say uℓ ∈ R. We repetitively apply Lemma 7 to merge all the
k subgraphs into a larger graph. We need at most (k− 1) red vertices to
merge k subgraph. We take this larger graph as the graph G′.

Phase 2 In this phase, we find the balanced connected subgraph H with b
vertices of each color. Note that the graph G′ generated in phase 1 contains
b blue and at most (b − 1) red vertices. Assume that G′ contains b′ red
vertices. We add (b− b′) red vertices from G\G′ to G′. This is possible since
G in connected.

Running time: In phase 1, first finding all the blue vertices and it’s induced
subgraph takes O(n2) time. Now to merge all the k components into a single
component which is G′ needs O(n2) time. In phase 2, adding (b− b′) red vertices
to G′ takes O(n2) time as well. Hence, total time requirement is O(n2).

Theorem 9. Given a graph G = (V,E) of diameter 2, where the vertices in G
are colored either red or blue. If G has b blue and r red vertices then, in O(n2)
time we can find a balanced connected subgraph in G having min{b, r} vertices
of each color.

4 Conclusions and open questions

We have introduced the problem of finding largest size (cardinality of the vertex
set) balanced connected subgraph in a simple connected graph. We have seen
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that this problem is NP-complete for bipartite graphs, chordal graphs, or planar
graph. We have given polynomial time algorithms for solving this problem for
trees, graphs with proper 2 coloring, split graphs and graphs with diameter 2.
So the obvious question is can other special classes of graphs be found to yield
polynomial time algorithms? For example, outer planar graphs, interval graphs,
regular graphs, permutation graphs etc. Here we give another open question. Let
G be a given graph and OPT be the number of vertices in an optimal solution
of BCS problem. Is there any polynomial time (α, β) approximation algorithm
which yields a solution H such that minimum number of blue and red vertices
in H is at most α × OPT and difference between the number of blue and red
vertices in H is at most β?
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