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Abstract

Registering brain magnetic resonance imaging (MRI) scans containing pathologies is challenging 

primarily due to large deformations caused by the pathologies, leading to missing correspondences 

between scans. However, the registration task is important and directly related to personalized 

medicine, as registering between baseline pre-operative and post-recurrence scans may allow the 

evaluation of tumor infiltration and recurrence. While many registration methods exist, most of 

them do not specifically account for pathologies. Here, we propose a framework for the 

registration of longitudinal image-pairs of individual patients diagnosed with glioblastoma. 

Specifically, we present a combined image registration/reconstruction approach, which makes use 

of a patient-specific principal component analysis (PCA) model of image appearance to register 

baseline pre-operative and post-recurrence brain tumor scans. Our approach uses the post-

recurrence scan to construct a patient-specific model, which then guides the registration of the pre-

operative scan. Quantitative and qualitative evaluations of our framework on 10 patient image-

pairs indicate that it provides excellent registration performance without requiring (1) any human 

intervention or (2) prior knowledge of tumor location, growth or appearance.

1 Introduction

Glioblastoma is the most common and aggressive malignant brain tumor that heavily and 

heterogeneously infiltrates surrounding tissue. This infiltration complicates treatment [1], as 

it is difficult to precisely localize the extent of infiltration. Considering that more than 80% 

of patients have a local tumor recurrence close to the initial resection cavity [2] (hence to the 

infiltrated brain tissue), we identify the need to accurately map correspondences between 

pre-operative (pre) and post-recurrence (post) brain tumor scans. Such registrations would 

support research into the early detection of tumor recurrence, e.g., enable the identification 

of subtle imaging phenotypic characteristics of tumor recurrence. Even though 
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correspondences are established between longitudinal image-pairs, where scans are expected 

to be comparable (as they are of the same patient), registration is challenging due to there 

being two sources of image appearance changes: first, the pre scans contain tumors and mass 

effect deformations; second, the post scans typically contain tumor resection cavities (where 

the tumor used to be in the pre scan) and show signs of tumor infiltration and recurrence.

Registration in the presence of pathologies may employ cost function masking [3] to exclude 

regions without clear correspondences and hence avoid influencing the registration’s image 

similarity term. Alternatively, one could combine cost function masking with a model of 

infiltration and mass effect [4]. A joint segmentation-registration method has also been 

proposed [5,6], that incorporates a tumor growth model and that estimates a patient-specific 

atlas to guide the segmentation and registration, while using 4 MRI modalities. Building 

upon this and considering that both pre and post scans are of the same patient, Kwon et al. 

[7] proposed a framework to jointly segment and register the post to the pre scans. However, 

it may be challenging to estimate the deformations of pre scans with large tumors and post 
scans with large mass effect relaxation. In addition, these segmentation-registration 

approaches require manual interaction in the form of seed-points to initialize the growth 

model and to model the intensity distribution of each brain tissue across modalities. This 

complicates the use for large-scale studies and hampers the clinical translatability of these 

methods.

To account for missing correspondences in pathological regions, an alternative strategy is to 

estimate a quasi-normal image by learning from population data and use it for registration. 

Quasi-normal images can, for example, be estimated by a low-rank/sparse (LRS) 

decomposition [8] or via deep variational encoderdecoder architectures [9]. However, these 

methods either blur the normal tissue appearance and compromise the registration results or 

require a large number of training images. Inspired by the LRS decomposition, Han et al. 

[10] proposed a joint PCA/image-reconstruction model, which also decomposes the 

pathological image into two parts: (1) normal tissue appearance is captured by a statistical 

(PCA) model; and (2) large pathologies are captured via a total-variation (TV) term, which 

avoids blurring of the normal tissue and retains fine details in the quasi-normal image. The 

reconstructed quasi-normal image is then used for atlas registration. One could directly 

apply this method independently to the pre and the post scans, and then register the resulting 

quasi-normal images. However, this strategy would ignore the fact that these scans come 

from the same patient and the statistical model in the atlas space may not adequately capture 

the normal appearance for a specific patient; consequently, the registration quality may be 

impaired. Similarly, Kwon et al. [11] extended their framework [7] by incorporating an 

inpainting strategy to account for pathological regions. However, prior knowledge about the 

tumor of each scan, comprising of seed-points with associated radii and initial intensity 

modeling of each brain tissue type, is required for the algorithm. This manual interactive 

step, in addition to introducing an extra burden to the method’s usability and increasing the 

time footprint of the method, also affects the objectivity and repeatability of the obtained 

results. All these together have a direct impact on the consideration of the method for 

potential clinical translation, as well as for large research studies. Therefore, a method 

combining the benefits of pathology modeling with patient-specificity, while eliminating 

manual interactions, is highly desirable.
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Contributions.

In this work, we present an automatic, repeatable, patient-specific registration approach for 

pre and post brain MRI scans that requires only a single modality. This is accomplished 

through careful adjustment of the PCA/image-reconstruction model [10]. In particular, we 

show how to (1) model each patient separately to improve the registration results and (2) 

leverage the decomposition’s TV term to intrinsically exclude the estimated pathology in 

case the image is not well-aligned to the target space.

Organization.

Section 2 describes our patient-specific registration framework, Sect. 3 presents the 

qualitative and quantitative evaluations of our approach, compared against other state-of-the-

art methods, and Sect. 4 concludes the paper with a discussion and an outlook on future 

work.

2 Methodology

We first present an overview of the low-rank/sparse approach [8] and the PCA-TV model 

[10]. We then propose modifications for patient-specific registration.

2.1 Low-Rank/Sparse (LRS) Decomposition

In the LRS approach, images {Ii : i = 1, 2,..., n} are first arranged as columns of a matrix I = 

[I1,..., In], where n describes the number of images. This matrix is then decomposed into a 

low-rank matrix L = [L1,.., Ln] and a sparse matrix S = [S1,..., Sn] by solving the problem:

{L, S} = argmin
L, S

‖L‖* + λ‖S‖1 , s . t . I = L + S, (1)

where ‖ ⋅ ‖* is the nuclear norm (i.e., a convex approximation of the rank ‖ ⋅ ‖1 denotes the 

𝓁1 norm, and λ weighs the penalty on sparse term. Liu et al. [8] proposed a low-rank-based 

registration method by alternating the LRS decomposition and registering the low-rank 

image to an atlas. Upon convergence, the low-rank matrix contains the normal information 

from all images, while the sparse matrix obtains the estimated pathology. The low-rank 

images are then used for registration. While effective, the approach suffers two 

shortcomings: First, it requires optimization over the entire population, which is ineffective 

and computationally expensive. Second, while it recovers normal appearance in pathological 

regions, normal tissue areas are blurred which may negatively affect registration results.

2.2 PCA-TV Model

Inspired by the LRS framework and the Rudin-Osher-Fatemi (ROF) image denoising model 

[12], Han et al. proposed a PCA-TV registration framework [10]. It registers all the 

“normal” images, i.e., images from healthy controls, to an atlas space only once, followed by 

a PCA on the warped normal images. The PCA basis is kept fixed, and the PCA-TV model 

decomposes the image by solving the following problem:
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L, T , α = argmin
L, T , α

1
2‖L − Bα‖2

2 + γ‖∇T‖2, 1, s . t . I = L + T , (2)

where I  denotes the “pathological image”, i.e., an image with at least a pathology/tumor, 

after we subtract the mean. ‖∇T‖2, 1 = ∑i‖∇T i‖2 i is the spatial location, {α} are the PCA 

coefficients and B is the PCA basis. The model consists of (1) a quasi-low-rank part L that is 

close to the PCA space and retains image detail, and (2) a TV term, which captures 

pathologies that are large, spatially contiguous, and not expressed by the PCA basis. The 

quasi-normal image is obtained by adding the mean image to the quasi-low-rank image. 

Overall, this model is more effective than the LRS decomposition, as it works on just one 

image and explicitly leverages spatial information.

Additionally, an iterative regularization strategy can be used after the decomposition, just as 

for the ROF model [13]. In particular, after solving (2) and obtaining L0 = L and α0, for 

k ≥ 1, one can iteratively solve

Lk, Tk, αk = argmin
Lk, Tk, αk

1
2‖Lk − Bαk‖2

2 + γ‖∇Tk‖2, 1 s . t . I k = Lk + Tk, (3)

where I k = I + Lk − 1 − Bαk − 1. After N regularization steps, the TV term TN captures the 

pathology and the quasi-low-rank term can be obtained by subtracting the TV term from the 

input image, i.e., LN = I − TN

The entire framework iteratively alternates between the image decomposition and atlas 

registration. Each iteration includes the registration of the quasinormal image to the atlas, 

the transformation of the input image to the atlas space, and the decomposition of the 

warped image in the atlas space. In addition, to avoid accumulating deformation errors, the 

quasi-normal image is always transformed back to the original image space prior to 

registration.

2.3 Patient-Specific Registration

When registering the pre to the post scan, one could simply apply the PCA-TV model (Sect. 

2.2) independently on each scan and then register the corresponding quasi-normal images. 

However, this ignores that both scans are of the same patient. In addition, both the LRS and 

the PCA-TV approaches register quasi-normal images to the atlas during each iteration, but 

never use the sparse/TV information. In case an image contains tumors with large mass 

effect, it is drastically misaligned with the population images. Hence, the decomposition 

may not work sufficiently, unless the image is well-aligned with the atlas. This is especially 

true during the first iteration of registration and decomposition. To overcome these 

shortcomings and improve the registration of pre and post scans, we propose the following 

key adjustments to the PCA-TV model.
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PCA-TV-Mask Model.

When we compute the decomposition in the first iteration, the image is only affinely aligned 

to the atlas. We apply Otsu thresholding to the TV image, to obtain a coarse mask of the 

pathological region (TV-mask). This mask is then used during the registration, i.e., we 

register the quasi-normal image to the atlas, but use the TV-mask for cost-function masking 

of the tumor. Once the image is better aligned to the atlas via a deformable registration, we 

remove the TV-mask and use the entire quasi-normal image for registration. We refer to this 

improvement as the PCA-TV-mask model.

Patient-Specific PCA.

Considering (i) that the post scan is relatively free from mass effects (e.g., except for 

scarring) and (ii) that the tumor resection cavity is easily modeled via the TV term, we 

propose the following two-step strategy. In the first step, we apply the PCA-TV-mask model 

to the post scan, resulting in a quasi-normal reconstructed image, in addition to registering 

the post scan to the atlas space. In the second step, we use the inverse transformation of the 

first step to map all normal images into the post scan space and then construct a new PCA 

basis from this data. Importantly, we can now use this new PCA basis together with the 

quasi-normal post image (now warped back to the patient space and used as atlas) to run the 

PCA-TV-mask model on the pre scan. Overall, this strategy allows direct registration 

between the pre and the post scans. Another advantage of using this patient-specific strategy 

is that by running PCA in the patient-specific space, the normal space spanned by the PCA 

basis is expected to be more consistent with the pre scan, which in turn improves the 

decomposition and registration results, when compared with the original framework.

3 Experiments

We evaluate our framework on 10 pairs of pre and post clinically-acquired scans of patients 

diagnosed with de novo (primary) glioblastoma. Each timepoint contains native (T1) and 

contrast-enhanced Tl-weighted (T1-CE), T2-weighted and FLAIR MRI. All modalities of 

each patient are skull-stripped, bias-field corrected, and affinely co-registered to the pre Tl-

CE scan of this patient that describes a 192 × 256 × 192 volume with voxel size of 0.977 × 

0.977 × 1.0 [mm3]. For quantitative evaluation, we use manually seeded landmarks from two 

clinical experts. The first expert placed 20 landmarks within 30[mm] from the tumor region 

and 30 landmarks outside the 30[mm] region in each pre scan. Then, both experts 

independently placed matching landmarks in the post scans. The landmarks placed by the 

first expert are considered the gold-standard and the ones placed by the second expert serve 

as a baseline comparison, referred to as RATER. In our experiments, we only use the T1 

volumes from each patient and run 6 iterations of registration and decomposition. The 

remaining 3 modalities were only used by the experts for seeding the landmarks. We pick 

100 normal images from OASIS [14] and select 50 as PCA basis. For registration, we use 

NiftyReg [15] as B-spline registration with the default settings and local normalized cross 

correlation as similarity measure (--lncc 40). The TV-mask is used in the first iteration when 

the image is only affinely aligned to the target image. After B-spline registration, we remove 

the TV-mask for subsequent iterations. We also apply the regularization steps in the last 

three iterations. γ in (2) and (3) for the decomposition model is chosen as 1 if no 
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regularization step is used and 2 if regularization steps are used. We compare with AFFINE 

[16], GREEDY [17], DRAMMS [18], ANTS [19], NiftyReg [15] and PCA-TV [10]. 

Although PORTR [7] was specifically designed for this task, we did not include it in our 

analysis, as our intent is to compare methods that do not require multiple modalities or 

manual interaction and hence more easily translate to clinical use.

We compute the mean landmark error for each region of each patient (Fig. 1) and we note 

that all deformable methods are better than affine registration, but worse than RATER. 

Compared to other deformable methods, our patient-specific approach improves the results 

in the close-to-tumor region. We also improve results in the region far away from the tumor, 

except when comparing with NiftyReg and the original PCA-TV model. In fact, as shown in 

Table 2, the improvements in the close-to-tumor region are statistically significant, assessed 

via a one-tailed paired Wilcoxon signed-rank test with a Benjamini-Hochberg procedure to 

control the false discovery rate at level α = 0.05. For far-from-tumor regions, the results are 

only significant when compared to AFFINE and GREEDY. We also calculate the effect sizes 

with each paired rank test. Most of the tests result in large or medium effect sizes.

We also evaluate the statistics of the paired landmark errors in both regions (Table 1). For 

each landmark, we calculate the differences of the errors between our framework and 

competing methods. Compared to RATER, our method shows worse performance on more 

than 50% of the landmarks. However, when comparing to other automatic registration 

methods, although at some landmarks our method performs worse than others by less than 

1.5[mm] near the tumor and 1[mm] far away from the tumor, as shown at 5% statistics, it 

shows better performance on more than 50% of the landmarks. In fact, the improvement, 

especially near the tumor, can be larger than 5[mm], as shown at 95% statistics in the table. 

Furthermore, on average, we perform better than other registration methods by 0.5[mm] near 

the tumor and by less than 0.2[mm] far away from the tumor. This is consistent with the 

green stars shown in Fig. 1. Our patient-specific method also improves over the PCA-TV 

model near the tumor which illustrates its utility and the benefit of the patient-specific 

model.

Finally, Fig. 2 shows example results from three patients, where we register the pre to the 

post scans. For the PCA-TV model and our patient-specific PCA-PS model, we reconstruct 

the quasi-normal images from each patient which are used to guide the registrations. 

Although the visual differences between our method and the PCA-TV model are subtle, 

other results show that by modeling the pathologies registrations are qualitatively more 

accurate. Note that, Fig. 2(c) illustrates the T2-FLAIR scans for the post images, only for 

visualization purposes, to better depict the surgically-imposed cavities of these illustrated 

examples. All the applied registration methods use only the T1 volumes.

4 Conclusion

We proposed a patient-specific registration framework based on a PCA-TV-mask model, 

which registers pre-operative and post-recurrence scans of the same patient. The framework 

uses the post scan, which is relatively free from mass effects, to build a patient-specific PCA 

basis, and directly registers the pre scan to the patient space. The validation results show that 
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our framework is more effective than the PCA-TV model, as well as other registration 

methods that do not explicitly model pathologies. In addition, our framework does not 

require any manual interaction, neither in the form of segmentation nor as tumor seeding, 

and only requires a single modality. In future work we will explore our method for different 

diseases, for example, to register acute and chronic image pairs from patients with traumatic 

brain injuries.
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Fig. 1. 
Boxplots of the mean landmark errors. For each method, the landmark errors are computed 

against the gold-standard. On each box, the red line is the median and the green star is the 

mean. The bottom and top edges of the box denote the 25th and 75th percentiles, 

respectively, the whiskers extend to the most extreme datas that are not considered outliers 

and the outliers are plotted in circle. (A) AFFINE; (B) GREEDY; (C) DRAMMS; (D) 

ANTs; (E) NiftyReg; (F) PCA-TV; (G) PCA-PS; (H) RATER. Our result is plotted in red. 

(Color figure online)
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Fig. 2. 
Example registration results from three patients. (a) and (b) show the pre and the post T1 

scans. (c) shows the post T2-FLAIR scans, only for visualization purposes. (d)-(i) show 

registration results of pre to post from GREEDY, DRAMMS, ANTs, NiftyReg, PCA-TV, 

and our patient-specific model, PCA-PS. In addition, (j) and (k) show the quasi-normal 

reconstructions of the pre and post scans, respectively. The red box highlights major 

differences. (Color figure online)
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Table 1.

Statistic results for all paired landmark errors in both regions. For each land-mark, we calculate the paired 

error; i.e., we subtract the landmark error of compared method from the landmark error of our method. This is 

to calculate the improvement obtained by our method. For each compared method, we rank the paired 

landmark errors and show the statistics in the table. The green boxes indicate results where errors from our 

framework are smaller.

Near Tumor[mm] Far from Tumor[mm]

5% 25% 50% 75% 95% Mean 5% 25% 50% 75% 95% Mean

AFFINE −1.03 0.22 1.65 3.71 7.58 2.32 −0.60 0.79 1.35 3.64 6.90 2.11

GREEDY −1.01 −0.28 0.31 1.18 6.03 0.94 −0.80 −0.17 0.05 0.43 2.77 0.36

DRAMMS −1.45 −0.55 0.18 0.79 4.68 0.52 −1.15 −0.28 0.14 0.52 1.16 0.13

ANTs −1.44 −0.31 0.17 0.80 6.10 0.59 −0.68 −0.18 0.08 0.37 1.32 0.17

NiftyReg −1.21 −0.19 0.12 0.60 3.35 0.51 −0.50 −0.14 −0.02 0.12 0.55 0.01

PCA_TV −1.06 −0.29 0.11 0.57 2.08 0.23 −0.45 −0.14 0.00 0.15 0.55 0.01

RATER −4.67 −1.86 −0.79 0.07 1.06 −1.18 −1.99 −0.74 −0.14 0.44 1.18 −0.21
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Table 2.

p-values and effect sizes for one-tailed paired Wilcoxon signed-rank test. We compare all methods (except for 

RATER) with our patient specific framework. Green boxes indicate statistically significant results after false 

discovery rate correction or effect sizes that are at least medium (>0.3).

AFFINE GREEDY DRAMMS ANTs NiftyReg PCA-TV

p-values
Near 9.77e-4 4.90e-3 1.37e-2 1.86e-2 4.90e-3 3.22e-2

Far 2.00e-3 1.37e-2 4.20e-2 0.116 0.423 0.385

effect sizes
Near 0.6268 0.5584 0.4900 0.4672 0.5584 0.4217

Far 0.6040 0.4900 0.3989 0.2849 0.0570 0.0798
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