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Abstract. For many segmentation tasks, especially for the biomedical
image, the topological prior is vital information which is useful to exploit.
The containment/nesting is a typical inter-class geometric relationship.
In the MICCAI Brain tumor segmentation challenge, with its three hi-
erarchically nested classes ’whole tumor’, ’tumor core’, ’active tumor’,
the nested classes relationship is introduced into the 3D-residual-Unet
architecture. The network comprises a context aggregation pathway and
a localization pathway, which encodes increasingly abstract representa-
tion of the input as going deeper into the network, and then recombines
these representations with shallower features to precisely localize the in-
terest domain via a localization path. The nested-class-prior is combined
by proposing the multi-class activation function and its corresponding
loss function. The model is trained on the training dataset of Brats2018,
and 20% of the dataset is regarded as the validation dataset to deter-
mine parameters. When the parameters are fixed, we retrain the model
on the whole training dataset. The performance achieved on the valida-
tion leaderboard is 86%, 77% and 72% Dice scores for the whole tumor,
enhancing tumor and tumor core classes without relying on ensembles
or complicated post-processing steps. Based on the same start-of-the-art
network architecture, the accuracy of nested-class (enhancing tumor) is
reasonably improved from 69% to 72% compared with the traditional
Softmax-based method which blind to topological prior.

Keywords: Topological prior · nested classes · 3D-residual-Unet ·multi-
class activation function

1 Introduction

Glioma are the most common family of brain tumors, and forms some of
highest-mortality and economically costly diseases of brain cancer [1,2,3]. The
diagnosed method is highly relayed on manual segmentation and analysis of
multi-modal MRI scans by bio-medical experts. Nevertheless, this diagnosed way
is severely limited by the labor-intensive character of the manual segmentation
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process and disagreement or mistakes between manual segmentation. Conse-
quently, there exists a great need for a fast and robust automated segmentation
algorithm. Convolutional neural networks (CNNs) have been verified to be ex-
tremely effective for a variety of semantic segmentation tasks [4].

While CNN segmentation algorithms are abundant in biomedical imaging,
only very few make use of nested-topological prior information. Among the few
that do [5,6,7,8,9,10,11], we find three different approaches. First, the use of
cascaded algorithms where the network consists of successive segmentation net-
works. Second, the information on the nested-classes is incorporated into the
loss function, imposing penalties on solutions that do not respect the nested
geometry relations. Third, Markov random fields are used to formalizing class
relationship in the post-processing of the network output. Here, we make use of
a new activation function [12] that is directly implementing class hierarchy in
the network training and generalize it to 3 nested classes. For the glioma labels
we assume that active tumor regions are always contained in the tumor core
which is surrounded by the tumor edema, resulting in a hierarchical three-class
model. In sharp contrast with nested-class method, the softmax-based method
of multi-class ignores the geometric prior between different classes, and assumes
the classes are mutually-exclusive, meaning one pixel cannot belong to different
classes at the same time, which absolutely discards the topological informa-
tion and sometimes leads the unreasonable segmentation results. The compari-
son of Dice score criteria between two different methods is implemented and it
obviously indicates the nested-class method achieves higher accuracy than the
softmax-based method, especially for the internal-classes.

In the following, we introduce a brief overview of start-of-the-art 3D-residual
U-net architecture and multi-class-nested activation and loss function. We then
propose and evaluate our model architectures for Brats tumor segmentation.
Finally, we implement the comparison between two main avenues and illustrate
the multi-level activation performs better especially in the inter-class.

2 Methodology

2.1 Network Architecture

The nested-classes relationship between different labels are shown in Fig.2.
The general network structure shown in Fig.1 is stemming from the previously
used glioma segmentation network by Isensee [13] to process large 3D input
blocks of 144x144x144 voxels. The original network is inspired by the U-net
[14] which allows the network to intrinsically recombine different scales through-
out the entire network. This vertical depth is set as 5, which balances between
the spatial resolution and feature representations. The context module is a pre-
activation residual block, and is connected by 3x3x3 convolutions with input
stride 2. The purpose of the localization pathway is to extract features from the
lower levels of the network and transform them to a high spatial resolution by
means of a simple upscale technology. The upsampled features and its corre-
sponding level of the context aggregation feature are recombined via concate-
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Fig. 1. Network architecture from [13]: Context pathway (left) aggregates high level
information;Localization pathway (right) localizes precisely

nation. Furthermore, the localization module, consisting of a 3x3x3 convolution
followed by a 1x1x1 convolution, is designed to gather these features.

Tumor

Tumor core

ET

Fig. 2. Schematic description of the nesting of classes in the BRATS challenge, which
respects the following hierarchy: Enhancing Tumor (ET) ∈Tumor core ∈ Tumor

The deep supervision is introduced in the localization pathway by integrating
segmentation layers at different levels of the network and combining them via
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elementwise summation to form the final network output. The output activa-
tion layer is multi-level Sigmoid layer instead of softmax layer in the Isensee’s
network which converting the multi-class problem to binary ones. Intrinsically,
the multi-level activation is the assemble of multi-sigmoid function and then
straightforwardly maps to multi-class segmentation incorporating the topologi-
cal prior. Consequently, it overcomes the softmax-based method’s shortcoming
which is blind to the geometric prior.

2.2 Crop preprocessing

For 3D network architecture, the larger patch size of training dataset con-
tains more continuous context knowledge and localization information which are
beneficial to improve the segmentation accuracy. In order to acquire to the larger
cube size patch of 3D image, the valuable knowledge in the MRI is extracted as
much as possible while the meaningless information is cropped. Then the crop
processing is implemented, and the maximum size of cube patch is selected as
[144,144,144].

The crop preprocessing equation is defined as:

array = [amin − (bsize − a)/2 : amin + (bsize + a)/2]

a = amax − amin
(1)

where amin and amax are the min and max non-zero information index of MRI
image, and a represents the length of non-zero information.bsize is the cube patch
size and selected as 144.

The index is recorded and used in the image post-processing stage to re-
covery back to the original shape [155,240,240]. However, a little of meaningful
information which exceeds the cube patch size 144 is unavoidably ignored and
have little effect on the segmentation result. In order to equally compare the
softmax-based with the multi-level method, no data augmentation operation is
used in the stage of image pre-procssing.

2.3 Multi-level method

Here, we use one output channel and a multi-class-nested activation func-
tion, as first proposed in [12].The multi-level method is inspired by continuous
regression, and thereby generalizing logistic regression to hierarchically-nested
classes. It is shown in Fig.3 and defined as

a(x) =

m∑
n=1

σ(k[x+ h(n− m+ 1

2
)]) (2)

Where σ is the sigmoid function, k is the steepness and h is the spacing
between consecutive Sigmoids. For Brain tumor segmentation challenge 4-classes
nested label case, we have m+1=4, and we take h=0.5 and steepness=10. The



Title Suppressed Due to Excessive Length 5

Threshold1

Threshold2

Threshold3

Fig. 3. Multi-class activation function, Eq.(1) with m+1=4, h=0.8 and k=10

corresponding loss function, called Modified Cross-Entropy (MCE) in [12], is
defined as

LMCE = − 1

Ntot

∑
pixel i

∑
classes c

yciw
clog(P c[a(xi)]) (3)

where wc is the weight of corresponding label,which we take aswcα(wcα =
(Ntot

Nc
)α), where Ntotis the sum number of pixels,Nc the number of pixels in

each class, and where yc = 1 for the ground-truth label c of pixel i and yc = 0
otherwise. Furthermore, the mapping function P c is defined as

P c=0(a) = 1− a/3
P c=1(a) = aΘ(1− a) + (3− a)/2Θ(a− 1)

P c=2(a) = a/2Θ(2− a) + (3− a)Θ(a− 2)

P c=3(a) = a/3.

(4)

Where Θ(x) is the Heaviside function. The other one loss function, called
Normalized Cross-Entropy (NCE) in [12], is defined as

LNCE = − 1

Ntot

∑
pixel

∑
i classes

yciw
clog(Θc[a(xi)]) (5)
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Furthermore, the mapping function Qc is defined as

Qc=0(a) = s(1− a)

Qc=1(a) = aΘ(1− a) + s(2− a)Θ(a− 2)

P c=2(a) = s(a− 1)Θ(2− a) + (3− a)Θ(a− 2)

P c=3(a) = s(a− 2).

(6)

where s is the softplus function,, and Θ(x) is the Heaviside function.
Weighted modified and Normalized cross-entropy losses are naturally com-

bined with standard cross-entropy loss and mitigate the class unbalance problem.
They also have the ability to encode of any hierarchical and mutually-exclusive
topological relationship of classes in a network architecture.

2.4 Evaluation metrics

In the task for BRATS, the number of positives and negatives are highly un-
balanced. Consequently, four typical different metrics are used by the organizers
to evaluate the performance of the algorithm and then rank the different teams.

Give a ground-truth segmentation map G and a segmentation map corre-
sponding one class generated by the algorithm. The four evaluation criteria are
defined as following.

Dice similarity coefficient(DSG):

DSC =
2(G ∩ P )

|G|+ |P | (7)

The Dice similarity coefficient measures the overlap in percentage between
G and P.

Hausdorff distance (95th percentile) is defined as :

H(G,P ) = max(supinfx∈G,y∈P d(x, y), supinfy∈P,x∈Gd(x, y)) (8)

where d(x, y) denotes the distance of x and y, sup denotes the supremum and
inf for the infimum. This measures how far two subsets of a metric space are
from each other. As used in this challenge, it is modified to obtain a robustified
version by using the 95th percentile instead of the maximum(100 percentile)
distance.

Sensitivity (also called the true positive rate) measures the proportion of
actual positives that are correctly identified. Specificity (also called the true
negative rate) measures the proportion of actual negatives that are correctly
identified. Assume P is the number of real positive prediction pixel of lesion and
N is the number of real negative prediction pixel of lesion. Condition positive
P consists with true positive TP and false negative FN . Besides, the condition
negative N is also divided into TN true negative and FP false positive.

Then, the metrics of Sensitivity and Specificity are illustrated as:

Sensitivity =
TR

P
=

TP

TP + FN
(9)
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Specificity =
TN

N
=

TN

TN + FP
(10)

Then the values of those four metrics were computed by the organizers inde-
pendently and made available in the validation leaderboard.

3 Experiment results

In BRATS 2018 dataset [15,16,17,18], there are four labels, Necrotic core,
Edema, Non-enhancing core and Enhancing core that form the three tumor
classes in Fig.2. The dataset contains 4 different modalities for MRI, native
(T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2) and T2 Fluid Atten-
uated Inversion Recovery (FLAIR) which are all used as different input channels.
We train the networks using ADAM optimizer with an initial learning rate of
0.0005, and to regularize the network, we use early stopping when the precision
on the 20% of the training dataset reserved for validation is no longer improved,
and dropout (with rate 0.3) in all residual block before the multi-class sigmoid
function. Some slices of segmentation results containing the tumor, tumor core
and enhancing core are shown in Fig.4. We observe that the topology geom-
etry between different labels is constrained to the nested-classes relationship,
consequently avoiding errors stemming from the lack of topological prior.

Dice score
Enhancing core whole tumor tumor Core Weight scheme

Multi-level(MCE) 0.719 0.857 0.769 0.4

Multi-level(NCE) 0.676 0.857 0.755 0.4

Multi-level(NCE) 0.633 0.837 0.736 0.5

Multi-level(NCE) 0.655 0.856 0.758 0.3

Softmax-based method 0.691 0.861 0.763 -

Table 1. Validation results presented on the leaderboard

The segmentation result is severely affected by highly unbalanced problems
existing in the Brats dataset. As class imbalance in a data set increases, the per-
formance of a neural net trained on that data has been shown to decrease dramat-
ically [19]. In order to mitigate this issue, many methods [20,21,22] were proposed
to modify the loss function to alleviate this problems. Here,the weighted cross
entropy incorporating the nested-class information is proposed and investigated.
We experimented with different weighting schemes (α=1,0.5,0.4,0.3) and with
the different losses MCE and NCE proposed in [12]. The best performing combi-
nation turned out to be α=0.4 and MCE loss function. The segmentation thresh-
olds to determine the boundaries between classes, were set to [0.95,1.65,2.2] on
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(b) Flair image (c) Prediction (d) Ground-truth(a) T1image

Fig. 4. Segmentation results, for five different validation cases. The tumor class is
depicted in red, tumor core in green and enhancing tumor in blue.

the validation process. For this final configuration, we reached Dice scores of 86%
for the complete tumor, 77% for the tumor core and 72% for the enhancing core
as presented in Table 1. The weighted-modified-cross-entropy performs much
better than the result achieved by normalized cross-entropy, and weight scheme
affects the segmentation result severely since the extraordinary unbalance prob-
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Dice score Enhancing core whole tumor tumor Core

Mean 0.71965 0.85685 0.76906

StdDev 0.28526 0.09802 0.21962

Median 0.84268 0.87823 0.84325

25quantile 0.6889 0.83379 0.70743

75quantile 0.8876 0.90895 0.91292

Table 2. Quantitative evaluation of Dice score

lem. The different weight schemes [0.5, 0.4, 0.3] are compared and the optimal
weight scheme is taken as 0.4. In comparison with the softmax-based method
based on the same network architecture proposed by Isensee without ensembles
operation, any complicated image pre-processing and post-processing steps and
extra training dataset, it indicates that the Dice score of nested-class (enhanc-
ing core) drastically improved from 0.691 to 0.719 while the Dice core of whole
tumor and tumor core almost remains at same extent. The quantitative evalu-

Mean Enhancing core whole tumor tumor Core

Sensitivity 0.74119 0.93916 0.78743

Specificity 0.9974 0.98715 0.99591

Hausdorff95 5.50007 10.84397 9.98557

Table 3. Sensitivity, Specificity and Hausdorff95 results presented on the leaderboard

ation (Mean, std, Median, 25%, 75% quantile) of Dice score of enhancing core
and whole tumor and tumor core are showed in Table 2. And other evaluation
metrics (the proportion of actual positives correctly identified—Sensitivity, the
proportion of actual negatives correctly identified—Specificity and Hausdorff95)
are listed in Table 3.

3.1 Threshold scheme definition and analysis

Setting the optimal threshold is an important component of the multi-class
segmentation task, and it is straightforwardly linked to segmentation bound-
ary. From the activation function (4 nested-class sigmoid function) Fig.3, the 4
classes segmentation problem is corresponding with the threshold scheme with
3 parameters [Threshold-1, Threshold-2, Threshold-3]. The threshold scheme is
optimally chosen during the validation procedure, and then fixed and applied
into test dataset.

In order to analyze how the threshold affects the segmentation accuracy, the
relationship between boundary threshold and Dice score is illustrated in Fig.5.
The target threshold is changed to the value taken from a specific interval which
is considered to be possible to achieve optimal segmentation result when other
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Fig. 5. Boundary division of Threshold scheme

thresholds are fixed at the optimal value. The criteria Dice score of three classes
is very sensitive to the threshold-3 value compared with other two threshold
indexes, that it may drop into Dice score valley within interval [2.2,2.4]. The
threshold-2 index has little impact on the Dice score of whole classes except
for threshold greater than 1.8. Consequently, it is easier to make an optimal
threshold scheme after determining indexes of threshold-3 and threshold-2. Af-
ter experiment and optimization, the suitable threshold scheme in the Brats
challenge is selected as [0.95,1.65,2.2].

4 Conclusions

In this paper we applied the technique of multi-level activation to the nested
classes segmentation of glioma. The results of our experiments indicate that the
multi-level activation function and its corresponding loss function are efficient
compared to Softmax output layer based on the same network framework. Using
the MCE loss function and a reweighting scheme with power-law =0.4, we obtain
Dice scores 86% for complete tumor, 77% for tumor core and 72% for enhancing
core on the validation leaderboard of the 2018 BRATS challenge, proving the



Title Suppressed Due to Excessive Length 11

applicability of the multi-level activation scheme. Finally, this activation could
be combined with other network architectures. Using it with the best performing
architecture of the BRATS challenge could even lead to further improved results.
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