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Abstract. Accurate segmentation of different sub-regions of gliomas including 

peritumoral edema, necrotic core, enhancing and non-enhancing tumor core from 

multimodal MRI scans has important clinical relevance in diagnosis, prognosis 

and treatment of brain tumors. However, due to the highly heterogeneous 

appearance and shape, segmentation of the sub-regions is very challenging. 

Recent development using deep learning models has proved its effectiveness in 

the past several brain segmentation challenges as well as other semantic and 

medical image segmentation problems. Most models in brain tumor segmentation 

use a 2D/3D patch to predict the class label for the center voxel and variant patch 

sizes and scales are used to improve the model performance. However, it has low 

computation efficiency and also has limited receptive field. U-Net is a widely 

used network structure for end-to-end segmentation and can be used on the entire 

image or extracted patches to provide classification labels over the entire input 

voxels so that it is more efficient and expect to yield better performance with 

larger input size. Furthermore, instead of picking the best network structure, an 

ensemble of multiple models, trained on different dataset or different hyper-

parameters, can generally improve the segmentation performance. In this study 

we propose to use an ensemble of 3D U-Nets with different hyper-parameters for 

brain tumor segmentation. Preliminary results showed effectiveness of this 

model. In addition, we developed a linear model for survival prediction using 

extracted imaging and non-imaging features, which, despite the simplicity, can 

effectively reduce overfitting and regression errors. 

Keywords: Brain Tumor Segmentation, Ensemble, 3D U-Net, Deep Learning, 

Survival Prediction, Linear Regression 

1 Introduction 

Gliomas are the most common primary brain malignancies, with different degrees of 

aggressiveness, variable prognosis and various heterogeneous histological sub-regions, 

i.e. peritumoral edema, necrotic core, enhancing and non-enhancing tumor core. This 

intrinsic heterogeneity of gliomas is also portrayed in their radiographic phenotypes, as 

their sub-regions are depicted by different intensity profiles disseminated across 
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multimodal MRI (mMRI) scans, reflecting differences in tumor biology. Quantitative 

analysis of imaging features such as volumetric measures after manual/semi-automatic 

segmentation of the tumor region has shown advantages in image-based tumor 

phenotyping over traditionally used clinical measures such as largest anterior-posterior, 

transverse, and inferior-superior tumor dimensions on a subjectively-chosen slice [1-

2]. Such phenotyping may enable assessment of reflected biological processes and 

assist in surgical and treatment planning. To compare and evaluate different automatic 

segmentation algorithms, the Multimodal Brain Tumor Segmentation Challenge 

(BraTS) 2018 was organized using multi-institutional pre-operative MRI scans for the 

segmentation of intrinsically heterogeneous brain tumor sub-regions [3-4]. More 

specifically, the dataset used in this challenge includes multiple-institutional clinically-

acquired pre-operative multimodal MRI scans of glioblastoma (GBM/HGG) and low-

grade glioma (LGG) containing a) native (T1) and b) post-contrast T1-weighted 

(T1Gd), c) T2-weighted (T2), and d) Fluid Attenuated Inversion Recovery (FLAIR) 

volumes [5-6]. 285 training volumes with annotated GD-enhancing tumor, peritumoral 

edema and necrotic and non-enhancing tumor. Furthermore, to pinpoint the clinical 

relevance of this segmentation task, BraTS’18 also included the task to predict patient 

overall survival from images together with the patient age and resection status. To 

tackle these two tasks, this study is performed with two goals: 1) provide pixel-by-pixel 

label maps for the three sub-regions and background; 2) estimate the survival days. 

Convolutional neural network (CNN) based models have proven their effectiveness 

and superiority over traditional medical image segmentation algorithms and are quickly 

becoming the mainstream in BraTS challenges. Due to the highly heterogeneous 

appearance and shape of brain tumors, small patches are usually extracted to predict the 

class for the center voxel. To improve model performance, multi-scale patches with 

different receptive field sizes are often used in the model [7]. In contrast, U-Net is a 

widely used convolutional network structure that consists of a contracting path to 

capture context and a symmetric expanding path that enables precise localization with 

3D extension [8-9]. It can be used on the entire image or extracted patches to provide 

class labels for all input voxels when padding is used. Furthermore, instead of picking 

the best network structure, an ensemble of multiple models, trained on different dataset 

or different hyper-parameters, can generally improve the segmentation performance 

over a single model due to the averaging effect. In this study we propose to use an 

ensemble of 3D U-Nets with different hyper-parameters trained on non-uniformly 

extracted patches for brain tumor segmentation. During testing, a sliding window 

approach is used to predict class labels with adjustable overlap to improve accuracy. 

With the segmentation labels, we will develop a linear model for survival prediction 

using extracted imaging features and additional non-imaging features since the linear 

models can effectively reduce overfitting and thus regression errors. 
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2 Methods 

For the brain tumor segmentation task, the steps in our proposed method include pre-

processing of the images, patch extraction, training multiple models using a generic 3D 

U-Net structure with different hyper-parameters, deployment of each model for full 

volume prediction and final ensemble modeling. For the survival task, the steps include 

feature extraction, model fitting, and deployment. Details are described as follows. 

2.1 Image Pre-processing 

To compensate for the MR inhomogeneity, the bias correction algorithm based on 

N4ITK was applied to the T1, T1Gd images, T2 and flair images [10]. A smooth 

inhomogeneity field due to variations in coil sensitivity was estimated and compensated 

from the images. A non-local means denoising method was then used to reduce noise 

after bias correction [11]. The implementations on ITK [12] were used with a Python 

wrapper from Nipype [13]. Python-based parallel execution with multiple threads was 

used to accelerate the two steps. The processed images were stored for future usage. 

Fig. 1 shows the original T1 image (left), image with only bias correction (center) and 

image with bias correction and denoising (right). The signal-to-noise ratio (SNR) of the 

image is increased with the denoising method, which could potentially help improving 

the segmentation accuracy and robustness against noise. 

 

 

Fig. 1. Original T1 image (left), image with only bias correction (center) and image with bias 

correction and denoising (right). The right image has improved SNR. 

As MR images do not have standard pixel intensity values, to reduce the effects from 

different contrasts and different subjects, each 3D image was normalized to 0 to 1 

separately by subtracting the min values and divided by the pixel intensity range. After 

normalization, for each subject, images of all contrast were fused to form the last 

dimension so that the whole input image size becomes 155x240x240x4. 
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2.2 Non-uniform Patch Extraction 

For simplicity, we will use foreground to denote all tumor pixels and background to 

denote the rest. There are several challenges in directly using the whole images as the 

input to a 3D U-Net: 1) the memory of a moderate GPU is often 12 Gb so that in order 

to fit the model into the GPU, the network needs to greatly reduce the number of 

features and/or the layers, which often leads to a significant drop in performance as the 

expressiveness of the network is much reduced; 2) the training time will be greatly 

prolonged since more voxels contribute to calculation of the gradients at each step and 

the number of steps cannot be proportionally reduced during optimization; 3) as the 

background voxels dominate the whole image, the class imbalance will cause the model 

to focus on background if trained with uniform loss, or prone to false positives if trained 

with weighted loss that favors the foreground voxels. Therefore, to more effectively 

utilize the training data, smaller patches were extracted from each subject. As the 

foreground labels contain much more variability and are the main targets to segment, 

more patches from the foreground voxels should be extracted. 

In implementation, during each epoch, a random patch was extracted from each 

subject using non-uniform probabilities. The valid patch centers were first calculated 

by removing edges to make sure each extracted patch was completely within the whole 

image. The probability of each valid patch center 𝑝𝑖,𝑗,𝑘  was calculated using the 

following equation: 

𝑝𝑖,𝑗,𝑘 =
𝑠𝑖,𝑗,𝑘

∑ 𝑠𝑖,𝑗,𝑘𝑖,𝑗,𝑘
                                                     [1] 

 

in which 𝑠𝑖,𝑗,𝑘 = 1 for all voxels with maximal intensity lower than the 1st percentile, 

𝑠𝑖,𝑗,𝑘 = 6 for all foreground voxels and 𝑠𝑖,𝑗,𝑘 = 3 for the rest. The patch center was then 

randomly selected based on the calculated probability and the corresponding patch was 

extracted. Since normal brain images are symmetric along the left-right direction, a 

random flip along this direction was made after patch extraction. No other 

augmentation was applied. 

Before training, the per-input-channel mean and standard deviation of extracted 

patches were calculated by running the extraction process 400 times, with each time 

using a randomly selected training subject. The extracted patches were then subtracted 

with the mean and divided by the standard deviation along each input channel. 

2.3 Network Structure and Training 

A 3D U-Net based network was used as the general structure, as shown in Fig. 2. Zero 

padding was used to make sure the spatial dimension of the output is the same with the 

input. For each encoding block, a VGG like network with two consecutive 3D 

convolutional layers with kernel size 3 followed by the activation function and batch 

norm layers were used. The parametric rectilinear function (PReLU), given as: 

𝑓(𝑥) = max(0, 𝑥) − 𝛼max⁡(0,−𝑥)                                  [1] 
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was used with trainable parameter 𝛼 as the activaton function. The number of features 

was doubled while the spatial dimension was halved with every encoding block, as in 

conventional U-Net structure. To improve the expressiveness of the network, a large 

number of features were used in the first encoding block. Dropout with ratio 0.5 was 

added after the last encoding block. Symmetric decoding blocks were used with skip-

connections from corresponding encoding blocks. Features were concatenated to the 

de-convolution outputs. The extracted segmentation map of the input patch was 

expanded to the multi-class the ground truth labels (3 foreground classes and the 

background). Weighted/non-weighted cross entropy was used as the loss function. 

 

Fig. 2. 3D U-Net structure with 3 encoding and 3 decoding blocks. 

The number of encoding/decoding blocks, the weights in the loss function and the 

patch size were chosen as the tunable hyper-parameters when constructing multiple 

models. Due to memory limitations, for a larger patch size, the number of features needs 

to be reduced. In current implementation, due to constraint in computational resources, 

six models were trained, with detailed parameters shown in Table 1. N denotes the input 

size, M denotes the number of encoding/decoding blocks and f denotes the input 

features at the first layer. For weighted loss, 1.0 was used for background and 2.0 was 

used for each class of foreground voxels. 

Table 1. Detailed parameters for all 6 3D U-Net models. 

Model # M N f Loss Type 

1 3 64 96 Uniform 

2 3 64 96 Weighted 

3 4 64 96 Uniform 

4 4 96 96 Weighted 

5 3 80 64 Uniform 
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6 3 80 64 Weighted 

 

Training was performed on a Nvidia Titan Xp GPU with 12 Gb memory. 640 epochs 

were used. As mentioned earlier, during each epoch, only one patch was extracted every 

subject. Subject orders were randomly permuted every epoch. The Tensorflow 

framework was used with Adam optimizer. Batch size was set to 1 during training. 

During testing, as a smaller batch size was very sensitive to the running statistics, all 

batch norm layers did not use the running statistics but the statistics of the batch itself. 

This is usually called a layer normalization as it normalizes each feature map with its 

own mean and standard deviation. A learning rate of 0.0005 was used without further 

adjustments during training. The total training time was about 60 hours. 

2.4 Volume Prediction Using Each Model 

Due to the fact that the entire image cannot fit into the memory during deployment, a 

sliding window approach needs to be used to get the output for each subject. However, 

as significant padding was made to generate the output label map at the same size as 

the input, boundary voxels of a patch were expected to yield unstable predictions when 

sliding the window across the whole image without overlaps. To alleviate this problem, 

a stride size at a fraction of the window size was used and the output probability was 

averaged. In implementation, the deployment window size was chosen to be the same 

as the training window size, and the stride was chosen as ½ of the window size. For 

each window, the original image and left-right flipped image were both predicted, and 

the average probability after flipping back the output of the flipped input was used as 

the output. Therefore, each voxel, except for a few on the edge, will be predicted 16 

times when sliding across all directions. Although smaller stride sizes can be used to 

further improve the accuracy with more averages, the deployment time will be 

increased 8 times for every ½ reduction of the window size and thus will quickly 

become unmanageable. Using the parameters as mentioned on the same GPU, it took 

about 1 minutes to generate the output for the entire volume per subject. Instead of 

performing a thresholding on the probability output to get the final labels, the direct 

probability output was saved for each model to the disk. 

2.5 Ensemble Modeling 

The ensemble modeling process was rather straightforward. The probability output of 

all classes from each model was read from the disk and the final probability was 

calculated via simple averaging. The class with the highest probability was selected as 

the final segmentation label of each voxel. 

2.6 Survival Prediction 

To predict the post-surgery survival time measured in days, extracted images features 

and non-image features were used to construct a linear regression model. 6 image 

features were calculated from the ground truth label maps during training and the 
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predicted label maps during validation. For each foreground class, the volume (V) by 

summing up the voxels and the surface area (S) by summing up the magnitude of the 

gradients along three directions were obtained, as described in the following equations 

                                                      𝑉𝑅𝑂𝐼 = ∑ 𝑠𝑖,𝑗,𝑘𝑖,𝑗,𝑘                                                      [2] 

                                        𝑆𝑅𝑂𝐼 = ∑ 𝑠𝑖,𝑗,𝑘𝑖,𝑗,𝑘 √(
𝜕𝑠

𝜕𝑖
)2 + (

𝜕𝑠

𝜕𝑗
)2+ (

𝜕𝑠

𝜕𝑘
)2                             [3] 

in which ROI denotes a specific foreground class and 𝑠𝑖,𝑗,𝑘 = 1 for voxels that are 

classified to belong to this ROI and 𝑠𝑖,𝑗,𝑘 = 0 otherwise. 

Age and resection status were used as non-imaging clinical features. As there were 

two classes of resection status and many missing values of this status, a two-

dimensional feature vector was used to represent the status, given as GTR: (1, 0), STR: 

(0, 1) and NA: (0, 0). A linear regression model after normalizing the input features to 

zero mean and unit standard deviation was fit with the training data. As the input feature 

size is 9, the risk for overfitting is greatly reduced. 

3 Results 

3.1 Brain Tumor Segmentation 

All 285 training subjects were used in the training process. 66 subjects were provided 

as validation. The dice indexes, sensitivities and specificities, 95 Hausdorff distances 

of the enhanced tumor (ET), whole tumor (WT) and tumor core (TC) were 

automatically calculated after submitting to the CBICA’s Image Processing Portal. 

With multiple submissions, we were able to compare the performances of each 

individual model and the final ensemble. 

Table 2. Performances of each individual model and the ensemble 

Model # Dice_ET Dice_WT Dice_TC Dist_ET Dist_WT Dist_TC 

1 0.7688 0.9015 0.8237 4.1270 4.5437 5.5226 

2 0.7677 0.9066 0.8248 4.2218 6.4637 8.8593 

3 0.7695 0.9040 0.8306 7.1372 8.9214 11.4460 

4 0.7707 0.8990 0.8104 3.1454 6.0081 6.9814 

5 0.7863 0.9078 0.8217 4.1894 4.5704 6.2030 

6 0.7616 0.8917 0.8149 4.2222 4.1053 6.9598 

Ensemble 0.7917 0.9094 0.8362 4.0186 3.8009 5.6451 

Table 2 shows the mean dice scores and 95 Hausdorff distances of ET, WT and TC 

for the 6 individual models and the ensemble of them. Sensitivity and specificity are 

highly correlated with the dice indexes so that they are not included. The best 

performance of each evaluation metric is highlighted. All 3D U-Net models perform 

similar but the ensemble of them has the overall best performances as compared with 

each individual model. It is also noticed that weighted cross-entropy loss has high 

sensitivity but lower specificity compared with the uniform counterpart, which is likely 

due to the fact that by assigning more weights to the foreground, the network tends to 

be more aggressive in assigning foreground labels. 
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3.2 Survival Prediction 

All 163 training subjects with survival data were used in the training process. The 

training coefficient of determination was 0.259. 28 cases were evaluated after 

submitting to the CBICA’s Image Processing Portal. The accuracy was 0.321, MSE 

was 99115.86, median SE was 77757.86, std SE was 104291.596 and Spearman 

Coefficient was 0.264. The performance on the validation dataset is not as accurate as 

other top teams in this task, however, our method won the 1st place in the testing dataset, 

which is likely due to significant overfitting of other teams in validation. The final result 

is encouraging and shows that a linear model is robust against overfitting. 

4 Discussion and Conclusions 

In this paper we developed a brain tumor segmentation method using an ensemble of 

3D U-Nets. Bias correction and denoising were used as pre-processing. 6 networks 

were trained with different number of encoding/decoding blocks, input patch sizes and 

different weights for loss. The preliminary results showed an improvement with 

ensemble modeling. For survival prediction, we used a simple linear regression by 

combining radiomics features from images such as volumes and surface areas of each 

sub-region and non-imaging clinical features. 

For segmentation, it is noted that the median metrics are significantly higher than 

the mean metrics. For example, the median dice indexes were 0.867, 0.923 and 0.904 

for ET, WT and TC in the final ensembled model. It makes sense in that the theoretical 

maximum dice index is 1 and minimum dice index is 0. However, we noted that in 

several cases, the dice indexes are as low as 0 for ET and TC and 0.6 for WT. It is 

mostly due to the low sensitivity meaning that the model is not able to recognize the 

corresponding tumor regions. The possible reason for these failed regions is that their 

characteristics deviate a lot from the training dataset. This is also encouraging in that 

for majority of the cases, the segmentation quality is very high. 

In the 3D U-Net model, we found that the batch norm layer was helpful in improving 

the model stability and performance. However, different with the canonical application 

of the batch norm layer, in which the batch statistics is used in training and the global 

statistics is used in deployment, it performed much better with batch statistics in 

deployment than global statistics. Since the batch size is 1, a per-channel normalization 

is actually performed by subtracting its own mean. One possible explanation could be 

that by doing such normalization, the model focuses on the differences of neighboring 

pixels in one channel and ignores the absolute values, which may help the segmentation 

process. However, further investigation is needed to figure out the exact reason. 

Compared with the patch-based model that only predicts the center pixel, when 

predicting the segmentation label maps for the full patch, different pixels are very likely 

to have different effective receptive field sizes due to the zero padding in the edge. We 

argue that a pixel should still be able to be predicted even based on partial receptive 

field, which, for the very edge pixel, corresponds to only half of the maximal receptive 

field. Furthermore, the significant overlap in the sliding windows during deployment 

can improve the accuracy with more averages. 
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In the current implementation, 6 networks were trained due to limitations in 

computation time. It is expected with more networks, the results can be further 

improved, although the marginal improvement is expected to decrease. 

For the survival prediction task, since it is very likely to overfit with such a small 

dataset and we argue that as many other features may play more important roles in 

overall survival such as histological and genetic features but unfortunately, they are not 

available in this challenge, a linear regression model was the safest option to minimize 

the test errors, although at the cost of its expressiveness. Further exploration of those 

additional features through clinical collaboration is expected to improve the accuracy 

of survival prediction. 

In conclusion, we developed an ensemble of 3D U-Nets for brain tumor 

segmentation. The network hyper-parameters are varied to obtain multiple trained 

models. A linear regression model was also developed for the survival prediction task. 

Our survival prediction model won the 1st place in the final stage of the competition. 

The code is available at https://github.com/xf4j/brats18. The paper that summarizes the 

challenge is available at [14]. 
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