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Abstract. The segmentation of a brain tumour in an MRI scan is a challenging 

task, in this paper we present our results for this problem via the BraTS 2018 

challenge, consisting of 210 HGG and 75 LGG volumes for training. We train 

and evaluate a CNN encoder-decoder network based on a singular hourglass 

structure. The hourglass network is able to classify the whole tumour (WT), en-

hancing (ET) tumour and core tumour (TC) in one pass. We apply a small amount 

of preprocessing to the data before feeding it to the network but no post pro-

cessing. We apply our method to two different unseen sets of volumes containing 

66 and 191 volumes. We achieve an overall Dice coefficient of 92% on the train-

ing set. On the first unseen set our network achieves Dice coefficients of 0.66, 

0.82 and 0.72 for ET, WT and TC. On the second unseen set our network achieves 

Dice coefficients of 0.62, 0.79 and 0.65 on ET, WT and TC.  
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1 Introduction 

Identifying regions of the brain which are tumourous is a task often carried out by med-

ical professionals. Manually classifying segments of the tumour is a subset of a group 

of problems commonly referred to as semantic segmentation. Semantic segmentation 

is the task of assigning a class to each pixel within an image, modern automated solu-

tions to this problem often use convolutional neural networks (CNN). The introduction 

of fully convolutional networks (FCN) [1] established a convolutional neural network 

architecture that is widely used for the task of semantic segmentation. Architectures 

such as U-NET [2] achieved success in biomedical imaging by adopting a similar ar-

chitecture.  

 

We propose the use of an adapted hourglass [3] network to solve the problem of 

tumour segmentation. The hourglass network improves on U-NET by using bottleneck 

blocks and adding convolutions to the skip connections. Training a CNN for this 
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problem is a natural choice as they have demonstrated state-of-the-art performance on 

semantic segmentation problems such as the widely used Pascal VOC2012 [9] and cit-

yscapes [10] datasets.  

2 Methods 

2.1 Data 

The dataset of BraTS 2018 [4-7] provides defined training and validation sets. The 

training set is composed of 210 MRI scans of high grade gliomas (HGG) and 75 MRI 

scans of low grade gliomas (LGG). Whilst the validation set is a group of 66 mixed 

HGG and LGG tumours. The MRIs are volumes with XxYxZ dimensions of 

240x240x155. Each volume has four corresponding modalities FLAIR T1,T2 and 

T1CE.  

2.2 PreProcessing 

A high variance in intensity in both validation and training set was observed this lead 

us normalise the training set to be centred around zero with a standard deviation of one. 

By normalizing the data, we found that the required training time was reduced and the 

accuracy of the network was increased. The formula for normalization is given in figure 

1. Each modality was normalized separately due to the variance in intensity profile be-

tween modalities.  

 𝑍 =  
𝑥− 𝜇

𝜎
 (1) 

Where 𝑥 is the current intensity, 𝜇 is the mean of the modality and 𝜎 is the standard 

deviation of the modality. 

2.3 Hourglass Architecture 

Our approach is to handle 2D slices of each volume separately, a 2D semantic segmen-

tation problem. We performed additional experimentation using a volumetric encoder-

decoder but found that the benefit of an end-to-end volumetric approach was out-

weighed by the significant necessary drop in features at each layer due to memory re-

strictions. 

We design our network using an encoder-decoder structure, adapted from an hour-

glass network, popularized in the domain of human-pose estimation [3] The structure 

of the hourglass is similar to other encoder-decoder networks, but contains a denser use 

of residual blocks throughout. 

 

The encoder contains 7 residual bottleneck blocks [8], after each a max-pooling layer 

performs spatial downsampling. A further three residual blocks at the lowest spatial 

resolution derive higher-level features before a series of bilinear upsampling operations 

return the network to the original spatial resolution. As in the encoder, all upsampling 
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operations of the decoder are interleaved with residual blocks. Skip layers are added 

between each matching resolution of the encoder and decoder, with each containing an 

additional residual block to learn an appropriate mapping. 

 

In order to improve the network’s results for the final test set we made architectural 

changes to improve accuracy whilst keeping memory consumption to a minimum. We 

found that the choice of upsampling layer (e.g. bilinear, max-unpooling [11]) made 

little difference to the performance of the network. Unlike the original work [3] we 

chose not to stack hourglass networks sequentially and perfom intermediate supervi-

sion, we found this too had a negligible effect on performance. The number of spatial-

downsampling layers, 7 in total, were originally chosen based on the input resolution. 

However, through experimentation we found that using 5 downsampling layers was 

optimal and save memory. Only one residual block is used at each depth because adding 

two at all depths immediately doubles memory consumption which surpasses current 

memory constraints. We also found that replacing elementwise summation with con-

catenation followed by a 1x1 convolution improved results noticeably. Despite the ad-

ditional memory consumption of the concatenation and convolutional layer, the in-

crease in performance boost makes the change worthwhile.  

2.4 Training 

The training was split into two phases pre and post true validation set release. In the 

first phase the dataset was split into a test set, validation set and training set where each 

set was 10%,10% and 80% of the original training set respectively. The data provided 

is treated as though it is the entire dataset so that our training can be validated and tested 

in preparation for the true validation set. This allows the network to avoid overfitting 

and approximate the results expected on the release of the second dataset. Later the 

network is retrained using a 10% test set and 90% training set split in order to obtain 

test results on the original data whilst maximizing the training set size. The network is 

trained for the same number of epochs for all training.  The second phase is conducted 

post true validation set release. In this phase the BraTS dataset is split into 10% valida-

tion and 90% training. 

 

The network is trained using an identical training scheme for both the natural and 

augmented dataset.  

 

The hourglass network implemented in this paper only uses spatial convolutions 

which means the data must be sliced along the depth dimension which effectively con-

verts a volume into a series of 155 image with a spatial resolution of 2562. The volumes 

have a spatial resolution of 2402 however for convenience we pad them to the new 

resolution. The dataset used is then 44175 images instead of 285 volumes. All four 

modalities are used to train the network and are inputted as different channels to the 

network.  
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The hourglass is trained using a cross entropy loss function with a learning rate of 

10-5 which is decreased by a factor of 10 every 30 epochs. The network is trained for a 

total of 50 epochs therefore the learning rate is only adapted once.  The adaptive gradi-

ent descent algorithm, RMSProp is used to train the network faster than the typical 

stochastic gradient descent. 

 

2.5 Data Augmentation 

Two methods of data augmentation are used in this paper vertical flipping and random 

intensity variation. Vertical flipping is used because it matches the natural symmet-

rical shape of the brain. 

Random intensity variation is used because the intensity between MRI scans varies 

significantly. This is shown by the fact that the standard deviation of the FLAIR mo-

dality in the dataset is greater than the mean by almost a factor of 10. E.g. The stand-

ard deviation and mean for the FLAIR modality are 529.2 and 61.8 respectively. The 

T1, T1CE and T2 modalities have similar standard deviations. Intensity variation is 

performed on the normalised dataset by first rescaling the standard deviation of the 

dataset and then shifting the mean. This allows the dataset to include image intensities 

which are not present in the original dataset but could appear on an MRI volume. The 

range for randomly changing the standard deviation is between zero and two. The 

mean is shifted between values of 0.4 and -0.4. Values above a standard deviation of 

two were experimented with but lead to a significant decrease in accuracy. Shifting 

the mean by over 0.5 and under -0.5 were trialed but also caused an accuracy de-

crease. 

 

3 Results & Discussion 

The results are split into three sections, the results on the training data set, the results 

on the later released validation set and the results on the final test set. Results are shown 

for networks trained on the standard data and on augmented data in the validation set.  

 

3.1 Training Dataset 

We trained the network on 90% of the data leaving 10% for testing purposes. The net-

work achieved a Dice coefficient of 92% with an IOU of 86%. We find that IOU ap-

proximates the network’s worst performance on the test set in contrast to Dice which 

gives an approximate representation of the average case.  
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3.2 Validation Dataset 

The results presented in this section are those achieved when segmenting the validation 

set using the network trained in section 3.1. Table 1 shows the results of the segmenta-

tion without augmentation and table 2 shows the results with flipping and intensity var-

iation. The metrics provided in both tables are the standard metrics output by the BraTS 

automatic online evaluation server. Some metrics have been omitted to save space, only 

the most important evaluation metrics have been included. 

 

 

 

 

Table 1.  The results of the hourglass network segmenting the unseen validation set without aug-

mentation in the training data. 

 Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausedorff TC 

Mean 0.59102 0.81638 0.63479 18.11974 94.28005 130.6982 

Std 0.28441 0.12274 0.24233 26.62022 50.15014 42.39722 

Median 0.70712 0.86227 0.70526 5.73233 97.12933 132.5891 

25 Quantile 0.47849 0.7832 0.50762 3.16228 52.71734 103.3565 

75 Quantile 0.80193 0.89504 0.82568 20.02904 135.8139 163.3901 

 

 

Table 2. The results of the hourglass network segmenting unseen validation set where the net-

work has been trained with augmented data 

 Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausedorff TC 

Mean 0.56337 0.82204 0.61797 14.27762 13.57432 17.94668 

Std 0.2888 0.12962 0.21713 23.25875 15.31909 18.13535 

Median 0.66684 0.86688 0.6712 5.91548 6.59447 11.18034 

25 Quantile 0.39652 0.78219 0.49556 2.82843 4.18205 8.29669 

75 Quantile 0.79578 0.90147 0.79259 12.55482 14.96802 18.78738 

 

After comparing the metrics between a dataset with augmentation and one without 

we find that in this challenge augmentation appears to give a small increase in accuracy 

for Dice coefficient and improves the Hausdorff accuracies significantly. It is likely the 

case that the frequency at which the network misclassifies pixels remains similar but 

the network’s ability to localize the pixels is increased.  

 

Overall the network segments the whole tumour more accurately than it does the 

core tumour or enhancing tumour, from the results in previous challenges this result is 

expected. Naturally the enhancing and core tumour are much more difficult to segment 

due to the similarity between all classes.  
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Table 1 and table 2 both show a large disparity between the median and mean accu-

racy especially with results for the enhancing tumour where the difference is around 

10%. The difference is caused by the difficulty of detecting the enhancing tumour and 

core tumour in some volumes. In most volumes the Dice coefficients are well above 

the mean however some outliers achieve a score of 0 therefore reducing the mean sig-

nificantly. When removing these cases the mean Dice coefficient increases by 4% 

showing that the disparity can be explained by a few very difficult volumes. Some ex-

amples of the metrics achieved on these volumes are shown in table 3. 

 

Table 3. Segmentation results for very difficult volumes using a network trained with augmented 

data 

 

 Dice 

ET 

Dice WT Dice TC Hausdorff 

ET 

Hausdorff 

WT 

Hausedorff 

TC 

Brats18_TCIA09_248_1 0 0.79274 0.62938 0 14.17745 10.81665 

Brats18_TCIA10_195_1 0 0.79941 0.62923 0 15.23155 25.98076 

Brats18_TCIA11_612_1 0 0.73506 0.60061 0 52.7731 48.51804 

Brats18_TCIA12_613_1 0 0.69355 0.2629 0 49.96999 9 

Brats18_TCIA13_646_1 0 0.90187 0.3996 0 35.82736 6.48074 

 

3.3 Test Dataset 

Before the release of the final evaluation dataset we train our network using 95% of the 

training data. The remaining 5% of the training data is used for on the fly validation of 

the network to monitor training and prevent overfitting. The network architecture has 

been adapted to improve the results on the validation set, these architectural changes 

are discussed in section 2.3. We present the new validation set results along with the 

test set results. Section 3.2 showed that the network has an increase in Hausdorff95 

accuracy when data augmentation was used. The network used for the results in this 

section was trained using data augmentation.  

Table 4. The results of the hourglass network segmenting unseen the validation set 

 

 Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausdorff TC 

Mean 0.65968 0.82035 0.72126 15.93993 26.41346 18.86627 

Std 0.2761 0.0951 0.22999 25.56283 23.61084 20.5594 

Median 0.78917 0.84303 0.79516 4.68556 17.32471 12.46982 

25quantile 0.56348 0.77912 0.61818 2.44949 7.19076 6.61366 

75quantile 0.84395 0.88679 0.88725 17.60682 38.13037 19.60737 
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Table 5. The results of the hourglass network segmenting unseen test set 

 

Label Dice ET Dice WT Dice TC Hausdorff ET Hausdorff WT Hausdorff TC 

Mean 0.616999 0.786054 0.651771 47.48392 13.53952 31.58409 

Std 0.323864 0.248256 0.336683 113.7593 23.50906 83.237 

Median 0.77046 0.87744 0.82395 3 5 6.40312 

25quantile 0.473615 0.7986 0.475805 1.73205 3 3.31662 

75quantile 0.846715 0.920085 0.895065 9.842435 9.72086 14.7985 

     

 

Table 4 shows the results of the hourglass network on the validation set. The dice 

scores for the validation set increase by 10% for both ET and TC whilst remaining 

approximately the same for the whole tumour segmentation. Conversely the Hausdorff 

scores increase (where a higher score is a decrease in performance) by 1, 13 and 2 for 

ET,WT and TC respectively. The increase in dice score indicates that the total number 

of pixels that are being classified correctly has increased but the decrease in Hausdorff 

score shows that the largest error in the shape of the classified pixels is much higher. 

The qualitative analysis presented in section 3.4 shows that this may be because mis-

classification of background pixels far away from the site of the tumour.  

 

     The median Hausdorff distance and dice score are significantly better than the mean 

indicating that the mean results are being distorted by a small subset of difficult to seg-

ment brain tumour volumes. This is discussed in section 3.2. The std of both metrics is 

also very high showing that the networks performance varies largely between volumes.  

The network shows a significant improvement in the most problematic volumes high-

lighted in table 3. Tables 6 shows the modified network’s performance on the selected 

examples. The average Hausdorff distance for the selected examples indicates an over-

all performance decrease however performance on individual volumes varies signifi-

cantly when dice scores are compared. The network architecture was modified in order 

to increase performance on the enhanced tumour, table 6 shows that on 3 out of 5 se-

lected cases there is an increase of between 4.6% and 38% for the enhancing tumour 

dice score. The variability in dice score amongst the other two metrics indicates that 

the training scheme has altered the networks ability to classify the tumour in these vol-

umes. 
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Table 6. The modified network’s segmentation results on a subset of problematic volumes 

 

 Dice ET Dice WT Dice TC Hausdorff 

ET 

Hausdorff 

WT 

Hausedorff 

TC 

Brats18_TCIA09_248_1 0 0.79768 0.4842 0 61.25561 12.40967 

Brats18_TCIA10_195_1 0 0.85514 0.71116 0 22.67157 30.23243 

Brats18_TCIA11_612_1 0.38484 0.63438 0.39605 98.47207 59.87487 98.2527 

Brats18_TCIA12_613_1 0.05991 0.93749 0.93743 58.25805 4.12311 2.82843 

Brats18_TCIA13_646_1 0.0459 0.69703 0.61365 111.1884 87.67696 15.13275 

 

 

The test set results show a decrease in performance on both dice score and hausdorff 

distance when compared to validation set results. The median scores for both metrics 

are noticeably better. This indicates that the validation set contains easier to segment 

volumes but the ratio between difficult and easy volumes is higher. The test set appears 

to have much more difficult volumes, this is corroborated by the very high standard 

deviation values. The results suggest that the percentage of easily segmented volumes 

in the test set is higher than the validation set.  

 

Despite the differences between the network’s performance on the validation and 

test sets both Table 4 and 5 indicate the same overall strengths and weaknesses of the 

network as well as the difficulties within the dataset.  

3.4 Qualitative analysis 

In this section we present singular slices taken from the network output. The output has 

4 classes which are represented by 4 different colours in the segmentation map. Black, 

yellow, blue and red represent background, whole tumour, core tumour and enhcnaing 

tumour.  

The network makes many mistakes when segmenting unseen volumes, most often 

these errors are misclassifying healthy brain tissues as tumourous. Often the mistakes 

are of a small area which does not affect the dice score significantly but has a noticeable 

impact on the hausdorff distance. These errors are important and can be improved upon 

however for brevity this section will focus on the largest errors associated with the 

problematic volumes highlighted in section 3.3. Figure 1 shows large errors in classifi-

cation. The largest errors the network makes occur when the input image has large er-

rors of darkness within the tumour caused by necrosis or an irregular tumour shape. It 

is unclear why this occurs but could be because the training set contains mostly tumour 

which have small amounts of necrosis which are masses enveloped by the whole tu-

mour. Therefore when given to the network it is unable to deal with the variance. 
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Figure 1: Left, a FLAIR volume slice containing both brain and tumour tissues. 

Right, a slice from the network output showing erroneous segmentation results. 
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4 Conclusion 

We propose a solution which achieves a 92% Dice coefficient on the training set and 

0.66, 0.82 and 0.72 on the validation set. On the test set the network achieves 0.62,0.79 

and 0.65 Dice scores. Although the network underperforms on Dice score it can achieve 

a competitive Hausdorff distance.  

 

Much of the network’s underperformance is related to outliers in the set which could 

be mitigated in future with better preprocessing techniques. Future networks should 

train more on these difficult volumes using wider public datasets or through synthetic 

images generated by a CNN. Memory consumption is often a problem when using 

CNNs, to combat this we plan to add residual blocks in depths which increase the over-

all accuracy of the network the most. We also plan to add skip connections with an 

inception block structure [12] as shown in [13] to increase accuracy further.  

 

We show that 2D architectures can segment 3D volumes with success but require 

fine tuning and a deeper architecture to achieve better results. An approach to bridge 

the gap may between 2D and 3D may be required. 3D networks outperform 2D net-

works when depth context is key how much context is required in most tasks remains 

unclear. We plan to use a 2.5D approach where each slice has an accompanying adja-

cent slice either side to provide some depth context.  
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