
Teaching Programming and Design-by-Contract

Daniel de Carvalho1, Rasheed Hussain, Adil Khan1, Mansur Khazeev1,
JooYong Lee1, Sergey Masiagin, Manuel Mazzara1, Ruslan Mustafin1,

Alexandr Naumchev1, and Victor Rivera1

Innopolis University
{d.carvalho, r.hussain, a.khan, m.khazeev, j.lee, s.masiagin, m.mazzara,

a.naumchev, v.rivera}@innopolis.ru

Abstract. This paper summarizes the experience of teaching an intro-
ductory course to programming by using a correctness by construction
approach at Innopolis University, Russian Federation. In this paper we
claim that division in beginner and advanced groups improves the learn-
ing outcomes, present the discussion and the data that support the claim.

1 Introduction

Formal methods are still struggling to get a broad acceptance in industry world-
wide, and Russia is not an exception. Innopolis is a new IT city [7], incorporat-
ing a technopark and a university, aiming at prioritizing the development of IT
and software engineering in Tatarstan and in the Russian Federation. Innopolis
University (IU) is pioneering several research and pedagogical projects and ex-
periments with innovative teaching methods and curricula. One of the numerous
peculiarities of this innovation has been the decision to teach formal methods
and correctness by construction together with programming since the first year
of the bachelor program. In particular the Eiffel programming language [9] is
used as a programming instrument and Design by Contract as a methodological
and conceptual tool [8].

This paper summarizes the experience accumlated by followinng this ped-
agogical approach. It also reports on the course structure and answers ques-
tions related to setup, programming language and chosen paradigm. The work
is structured as following: Section 2 motivates the choice of adopting Eiffel as
first programming language to be studied. Section 3 describes the structure of
the course and the Design by Contract approach adopted. Section 4 reports
empirical results on our teaching effort: a poll was presented to students and
some data collected. Finally, the numerical data presented is then analyzed and
commented in Section 5.

2 Eiffel as first language

The choice of Eiffel and Design by Contract as programming and methodological
tools for first year bachelors has been long discussed inside the university. After

ar
X

iv
:1

71
0.

07
95

6v
2 

 [
cs

.S
E

] 
 4

 J
ul

 2
01

8



four years we could not find any evidence suggesting the need for a change.
Instead, we will consider some data supporting the idea that the course worked
out succesfully, both in terms of content and organization. It is however worth
motivating the decision more in detail.

Which programming language is better to start studying for the beginners?
No single answer exists. In general, it is easier to answer to the opposite ques-
tion: ”What programming language is better not to start with?”. Experience
has shown that teaching a specific language from scratch in order to satisfy a
specific and urgent needs may not bring individuals to develop into a skilled
and versatile professionals. Professional experience has shown cases of individ-
uals who improvised themselves as Visual Basic programmers from scratch, or
moved from FORTRAN or COBOL to Java because of some local business need.
Often the immediate emergency was patched, but the correct mindset and basic
skills required by an experienced professional were not developed. Sometimes
such an emergency is inevitable, but developing a quality curriculum for a top-
level university requires more care and deeper analysis of what programming is
and programmers need, with some initial and pedagogical detachment from raw
business needs.

Worldwide, examples of good pedagogical approaches for programming are
not missing. There are a few preliminary considerations to be done in order to
follow these succesfull steps . First, what programming paradigm we want to use?
There is a general tendency to prefer the Object Oriented Programming (OOP)
Paradigm [17] as starting point since it helps students developing abstraction
skills and design method. This approach, however, is not without its critics: some
believe that Object Orientation may deal too much (and too early) with design
and interface aspects and not enough with algorithmic details and imperative
flow structure. According to this view, procedural programming would be better
to start, while Object Orientation should be introduced in advanced courses. Of
course, this depends on how the course is organized and taught, but the concern is
serious. The school of thought privileging OOP usually concentrates on languages
like Java [1] or C# [4] in order to take into account business demand. The school
of procedural programming sometime concentrate on purely academic languages
like Pascal [5], with the benefit of simplicity, or widespread languages like C [6],
offering broader flexibility (and related complexity). There are other paradigms
too, for example the Functional (Lisp [15], ML [11], Scala [12] and Haskell [14]),
which has attracted renewed interest in recent years, and Logic (Prolog [2]).

The second general observation is that any computer scientist or software
engineer will learn a number of programming languages over the course of his
career. In particular, everyone will learn one or more of the dominant languages
such as, today, Java, C#, C, C++ or Python. So the choice of the first program-
ming language is not exclusive of others; rather, it is a preparation for others,
and should emphasize development of the skills needed to learn programming.
(In fact, an increasing number of students have done some experience with Java
or other languages before they even join the university program.)



When desiging an introduction to programming course is also important to
reflect on how much emphasis (if any) shoud be put on formal reasoning, software
quality and correctness by construction. The University is the ideal time of life
for learning new concepts and, at the same time, build the foundations of one’s
knowledge and mindset. Establishing a broad and deep basis is also the best way
to make sure that students not only receive sufficient initial training to obtain
a first job, but acquire the extensive long-term intellectual skills to pursue a
successive career over several decades: the technologies will change, particularly
in such a quickly evolving field as Information Technology, but the principles
acquired during university study, if thought without dogma and with an open
mind, will remain useful.

As a result, a broad school of thought supports the idea that the introductory
programming course and the first programming language should emphasize Com-
puter Science foundations and formal reasoning in order to strengthen a mind-
set leading to development of quality software. Eiffel and Design-by-Contract
are just one possible technological and methodological solutions to implement
such philosophy, and it is the one collectively chosen for our Introduction to Pro-
gramming in order to provide the adequate mindset to future professionals. This
path is not free of controversy. The experience inherited from ETH Zurich 1 is
positive [13], and the course was well received by students. We aim at repeating
the success in different contexts, though an adaptation phase is necessary and
benefits of the approach may not appear as immediate.

3 Course Structure and approach

In this section we will discuss how the course Introduction to Programming I is
structured at Innopolis.

The Introduction to Programming I course (was called Object Oriented Pro-
gramming the first year it was delivered) is a 6 ETCS course delivered to first
year bachelor students at IU over 15 weeks with 2 academic hours of frontal lec-
tures and 4 hours of laboratory exercises every week. The team is composed by
a Principal Instructor (PI) in charge of delivering lectures (PI has changed twice
in the past years – although they both work in the same team) and Teaching As-
sistants (TA) in charge of delivering laboratory exercises. PIs are formal method
experts, and TAs are researchers or PhD students in the area. The foundational
ideas on which the course is based are:

– The foundation for programming lies on mathematical and logical bases
– Identifying and fixing bugs early is cost effective, hence the emphasis on

correctness by construction (in synergy with testing)
– Explain and delivering these points to the students so that this knowledge

is passed to their future job environments

Frontal lectures are given in English to all students and there is no differen-
tiation between the level of English proficiency of students. Lab sessions, on the

1 https://www.ethz.ch/en.html

https://www.ethz.ch/en.html


other hand, are split into 4 categories: by the level of experience in programming,
Beginners or Advanced, and by the natural language, Russian (native language
for the majority of students) and English. Students had the ability to select
which level they belong to based on their perception. The decision is done at the
beginning of the course and students are not allowed to change once they have
decided. In order to successfully pass the course, all students need to pass all
evaluations. Evaluations do not make any assumptions about the level and are
the same for all students. As overall structure, the course cover the foundations
of imperative programming, from the notion of variable to control flow struc-
ture, but keeps tightly an object orientation introducing very early concepts as
classes, objects and methods. Soon enough inheritance and polymorphism are
also introduced. There is nothing new in exposing millenials to an OOP language
as first programming language. These kind of experiments appeared as early as
in the 80s and become very common in the 90s. The peculiarity of our approach
is exposing millenials to the notion of Software Contract using the metaphor of
business contract. Design by Contract (DbC) [10] is an approach to achieve the
so-called correctness by construction [3]. Correctness by Construction makes use
of foundations of logic, concepts that are taught by a Discrete Math course which
our students need to attend either prior or in parallel to our course. Introduction
to Programming I is not a course project (somehow along the Russian academic
tradition), the evaluation is based on a set of smaller assignments, a mid-term
exam and a final exam. It has to be admitted that this represents somehow a
limitation, since it is difficult to relate the course with the activity of the com-
panies already based in Innopolis.There are also quizzes that are not graded and
their purpose is to provide feedback to students.

The notion of contract is introduced in the very first weeks of the course as
an instrument to embed specification into the code and being sure that such
a specification is checked for violation at run time. Tools for static verification
also exist, for example Autoproof [16], however these are only introduced towards
the end of the course. The natural perception for students, at least to those who
have been exposed to programming languages before, is that specification and
code do not go together. It has been observed that students do not initially
understand the reason of using math and logic concepts to specify the behavior
of code. The perception changes when they can actually see the importance of
specifying the ‘what’ so to properly implement the ‘how’: specification and code
are not two separate artifacts, they go together and proceed together and we can
automatically trace and verify their consistency. This is the very idea of formal
methods, and it is something our students have been never exposed to before in
the totality of cases.

Students are introduced the idea of DbC without making any neat distinc-
tions (syntactical or semantical) between the code itself and the contract, in
fact a contract is presented for what it is: part of the code integrating with the
imperative aspects and the modularization and reuse of code peculiar of OOP
(natively supported by Eiffel). It has been noticed that students with no pro-
gramming experience absorb this fact without any problem or objections, and



indeed in a completely natural way. This is not true for students with a bias
due to occasional and superficial previous programming experience. The bias is
even stronger in students that consider themselves fluent programmers in some
other language. This observation reinforces the fact that formal methods can
more easily thought when there is no a priori bias. The course also introduces
the concept of testing, its taxonomies and different approaches for testing mea-
surements. Students quickly grasp the idea of using contracts as unit tests for
features. It was noticed that advanced students, after having understood the
main idea behind DbC, often ask about the use of contracts in the automatic
generation of input values for test cases for features. They are also curious about
the necessity of testing in the presence of contracts since contracts can be used
for the formal verification of correctness. This observation reinforces the fact
that students grasp the concepts and master them in a natural way.

In order to understand how the course, and in particular the notion of DbC,
helps students to better grasp programming concepts, a questionnaire was given
to those who passed Introduction to Programming in Fall 2016. We asked a
single question:

– Did Design by Contract help you to grasp better software concepts presented
in the continuation of your study? (definitely not/ not /neutral / yes/ defini-
tively yes)

Fig. 1. Results of the question: Did DbC help you to better grasp software concepts
presented in the continuation of your study?

Fig.1 shows that students found DbC useful to better grasp programming
concepts.

4 Results

This Section is devoted to present the data and analysis of the students’ per-
formance for the Introduction to Programming course after implementing the



choices and structure described in previous sections. We analyzed the data of
students’ grades who attended the course at Innopolis University and asked
ourself whether the separation in beginners and advanced is useful to the ped-
agogical process. In this paper, we do not analyze the effect of the language
division: English vs. Russian. This aspect will be explored in the future.

In Fig.2 we report the distribution of the overall final grade of the course for
Fall 2016. It is noticeable that higher grades go to advanced and lower to begin-
ners. This suggests that the self assessment is informative for the continuation of
the course and labs at different levels can be treated separately. Instructors for
example can assume a better understanding of programming for advanced stu-
dents. Table 1 provides some further confirmation of this fact and summarizes
the results of the major grading milestones for Fall 2016. This data suggests
that the self assessment is sound, i.e. students are able effectively to capture
their programming skills. In particular, in the final exam advanced performed
about 10% better on average. It is worth noticing however, that the best grade
was obtained instead by an outlier, i.e. a beginner student who performed bet-
ter than anyone else. The presence of outliers does not invalidate the general
scheme. To the contrary, it is expected than some students decide to attend a
group different from the self perceived level for different reasons, for example to
study with a friend or to have a more comfortable environment. The presence
of successful beginners can also be explained in terms of attitude. As discusses
in Section 3, it has been observed how students that consider themselves good
programmers have a bias against learning a new language and a new methodol-
ogy, while beginners naturally absorb new ideas. Clearly, this bias may end up
in being an inhibitor of success.

The data collected in Fall 2016 and reported here seemed to suggest that the
division Beginner/Advanced was informative. To find more evidence of that, in
Fall 2017 we compared the self assessment with the results of an actual entry
test that students undertook at the beginning of the semester. The test was
about computer science in general, and in particular on programming and data
structures. Students were never informed about the results of such a test, so
that their self assessment was not biased. Figure 3 reports on how accurate the
students’ self-assessment (x-axis) compares with the actual test assessment (y-
axis), for instance, 68 students who assessed themselves as advanced were in
fact advanced students based on their grades of the course. Results show with a
higher level of confidence the usefulness of the division beginner/advanced.

5 Discussion

Introduction to Programming divides students in four groups on the basis of a
technical self assessment and a choice of preferred teaching language (Russian or
English). In this paper we analyzed only the division based on programming skills
while the language choice will be investigated in future. The data collected and
analyzed supports the idea that such an organization is useful, i.e. the students
self assessment is a good predictor of technical skills, with the exception of



Fig. 2. Total grade distribution in beginners and advanced groups

Fig. 3. Self-assessment vs. entry test



Table 1. Cumulative results

Average Max Min

Mid-term Exam

21.11 32.4 7.6 Beginners

23.80 37.2 11.2 Advanced

12.70% 14.81% 47.37% Difference

Final Exam

20.28 31.8 3 Beginners

22.21 30 12 Advanced

9.55% -5.66% 300.00% Difference

some outliers that may be explained by the bias of advanced against learning
a new language. The results of this paper are however not fully conclusive, and
further studies are required. On top of this conclusion, we report the result of
a questionnaire that shows how the majority of students who passed the course
believe that DbC is useful to better grasp software concepts presented in the
continuation of Innopolis curriculum. All this supports the idea that the course
is effective, both in terms of content and methodological approach, and for what
concerns the actual organization. After further confirmation of the results we
plan to introduce changes to the course. In particular, we plan to inform students
of their grades in the technical test. This will allow them to make an informed
choice when they self assess their technical skills. Participation to group may
remain up to students’ decision, but this decision will be supported by objective
information.

References

1. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edn. (2000)

2. Bratko, I.: Prolog Programming for Artificial Intelligence. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (1986)

3. Chapman, R.: Correctness by construction: A manifesto for high integrity software.
In: Proceedings of the 10th Australian Workshop on Safety Critical Systems and
Software - Volume 55. pp. 43–46. SCS ’05, Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia (2006), http://dl.acm.org/citation.cfm?id=
1151816.1151820

4. Hejlsberg, A., Torgersen, M., Wiltamuth, S., Golde, P.: C# Programming Lan-
guage. Addison-Wesley Professional, 4th edn. (2010)

5. Jensen, K., Wirth, N.: PASCAL User Manual and Report. Springer-Verlag New
York, Inc., New York, NY, USA (1974)

6. Kernighan, B.W.: The C Programming Language. Prentice Hall Professional Tech-
nical Reference, 2nd edn. (1988)

7. Kondratyev, D., Tormasov, A., Stanko, T., Jones, R.C., Taran, G.: Innopolis
university-a new it resource for russia. In: 2013 International Conference on In-
teractive Collaborative Learning (ICL). pp. 841–848 (Sept 2013)

http://dl.acm.org/citation.cfm?id=1151816.1151820
http://dl.acm.org/citation.cfm?id=1151816.1151820


8. Meyer, B.: Applying ”design by contract”. Computer 25(10), 40–51 (Oct 1992),
http://dx.doi.org/10.1109/2.161279

9. Meyer, B.: Eiffel: The Language. Prentice-Hall, Inc., Upper Saddle River, NJ, USA
(1992)

10. Meyer, B.: Object-oriented Software Construction (2Nd Ed.). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1997)

11. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,
Cambridge, MA, USA (1997)

12. Odersky, M., Micheloud, S., Mihaylov, N., Schinz, M., Stenman, E., Zenger, M.,
et al.: An overview of the scala programming language. Tech. rep. (2004)

13. Pedroni, M., Meyer, B.: The inverted curriculum in practice. SIGCSE Bull. 38(1),
481–485 (Mar 2006), http://doi.acm.org/10.1145/1124706.1121493

14. Peyton Jones, S.: Haskell 98 language and libraries: the Revised Report. Cambridge
University Press (2003)

15. Steele, Jr., G.L.: Common LISP: The Language (2Nd Ed.). Digital Press, Newton,
MA, USA (1990)

16. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: Autoproof: Auto-active
functional verification of object-oriented programs. In: 21st International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems. Lec-
ture Notes in Computer Science, Springer (2015)

17. Wegner, P.: Concepts and paradigms of object-oriented programming. SIGPLAN
OOPS Mess. 1(1), 7–87 (Aug 1990), http://doi.acm.org/10.1145/382192.

383004

http://dx.doi.org/10.1109/2.161279
http://doi.acm.org/10.1145/1124706.1121493
http://doi.acm.org/10.1145/382192.383004
http://doi.acm.org/10.1145/382192.383004

	Teaching Programming and Design-by-Contract

