
Approximate Memory support for Linux Early

Allocators in ARM architectures

Giulia Stazi, Antonio Mastrandrea, Mauro Olivieri, and Francesco Menichelli

Dept. of Information Engineering, Electronics and Telecommunications (DIET)
Sapienza University of Rome, Via Eudossiana, 18, 00184 Roma, Italy
{stazi,mastrandrea,olivieri,menichelli}@diet.uniroma1.it

Abstract. Keywords: Approximate Memory, Approximate comput-
ing, Linux OS, Low Power Embedded Systems

Approximate computing is a new paradigm for energy efficient design, based on
the idea of designing digital systems that trade off computational accuracy for
energy consumption. The paradigm can be applied to different units (i.e. internal
units of the CPU, floating point coprocessors, memories). Considering the mem-
ory subsystem, approximate memories are physical memories where circuit-level
or architecture-level techniques are implemented in order to reduce energy at
the expense of errors occurring in bit cells. Supporting approximate memories
at operating system level is required for managing them efficiently and for allow-
ing user level applications to use it directly, but its implementation is subject to
specific requirements and constraints, sometimes architecture dependent.

In this paper we describe the introduction of approximate memory support on
ARM architectures, which are widely adopted in low power embedded systems.
While Linux support for approximate memory has already been introduced for
main allocators, porting it to ARM architectures required the introduction of its
specific support in the Linux early allocators, that are a fundamental function
of the Linux kernel startup phase, before instantiation of the main allocators.

1 Introduction

Approximate memories, as part of the approximate computing design paradigm,
have been a particularly prolific source of research works in the late years. De-
pending on the technology (i.e. DRAM, SRAM) many architectural ideas and
circuit design implementations have been proposed [1–4], demonstrating a large
impact in reducing the energy consumption of the memory subsystem. In par-
allel with the introduction of them as a component in a computing platform, a
second problem arises: the ability to efficiently managing and make them usable
in software applications.While in simpler architectures memories are managed
and allocated directly by software, larger and more complex embedded systems
platforms (e.g. embedded systems for networked applications, graphics or mul-
timedia [5, 6]) tend to have an operating system which provides fundamental



2 G.Stazi et al.

services as multiprocessing, virtual memory management, file system and net-
work stack. These systems are also those that require larger array of physical
memories, thus they benefit more from the reduction of energy consumption
offered by approximate memories.

Since Linux is widely used as OS in embedded systems, due to its flexibil-
ity and availability of source code, approximate memory support for the main
allocators has already been investigated and implemented [7]. However, for the
complete support of approximate memories, especially for embedded platforms,
such as ARM architectures, it is required that Linux early allocators, which are
the fundamental allocators used during the startup of the operating system,
are modified. Linux early allocators are responsible for allocating, among oth-
ers, data structures required by kernel deeply internal functions, as the virtual
memory management in the main allocator.

The following Sections are organized as follows: in Section 2 we describe the
state of approximate memory support before this work, Section 3 reports the
main contribution of the present work. Section 4 provides results, in the form of
allocation statistics provided by the kernel and discusses the characteristics of
the implementation.

2 Previous works

In this section we briefly describe our previous work regarding the introduction
of approximate memory support in Linux kernel [7]. This extension, which relies
on the internal concept of physical zone, involved the creation of a new Linux
memory zone, called ZONE APPROXIMATE, where approximated pages con-
taining non-critical data can be grouped, and the implementation of a custom
system call to allow user space applications to dynamically request pages within
this zone.

The advancements described in this paper regard the extension of approx-
imate memory support for Linux kernel early allocators, along with boot time
vector allocation. This further steps were required for porting approximate mem-
ory support to ARM architectures, but is valid for all architectures that make
use of early boot allocators during the booting process.

3 Linux Early allocators and approximate memory

Linux early boot allocators are used during the boot process in order to allocate
data structures in the initial phase of system startup, before the main allocators
are instantiated. For ARM architectures, the initialization of all physical zones,
including ZONE APPROXIMATE, takes place in bootmem init function. This
routine determines the limits of all physical memory available (PFN limits) and
sets up the early memory management subsystem. After this process, pages
allocated by the boot allocator are freed and physical zone limits, including
ZONE APPROXIMATE, are determined.



Approximate Memory support for Linux Early Allocators... 3

3.1 Bootmem allocator

At start-up Linux kernel gains access to all physical memory available in the
system. Before memory zone allocator is set up and running, it can be nec-
essary to preallocate some initial memory areas for kernel data structures and
system-wide use, taking them from available RAM. To address this requirement,
a special allocator called bootmem allocator or memblock allocator, is introduced.
The initialization of this early allocator is architecture dependent and it is set
up in setup arch routine.

Once the boot memory management is available, it can allocate areas from
low memory (memory directly mapped in Kernel space), with page granularity.
The early allocator is used only at boot time to reserve and to allocate pages for
internal kernel use. For example, page tables are built from this pool of physical
memory pages, allowing the MMU to be turned on and Linux kernel to switch
to virtual memory management.

The whole mechanism requires that the kernel must be aware of approxi-
mate memory in the early boot phases: approximate memory must be visible
in order to properly instantiate paging and main allocators, but must not be
used for kernel data structures, which contains critical data that do not allow
any form of corruption. In order to exclude physical memory pages mapped as
approximate from bootmem allocation, we modified the allocation algorithm of
the memblock interface. A memblock is a structure that stores information of
physical memory regions reserved by Linux kernel during the early bootstrap
period. The core function of this early allocation is memblock virt alloc internal,
which in turn calls memblock find in range node. This routine receives as param-
eters, among others, the requested memory size and the lower and upper bounds
of the physical region where the memory block will be allocated. At first, the
allocation starts from the lower bound and the following allocation requests will
proceed to lowest available address starting from the lower bound. The upper
bound instead corresponds to the end of the candidate physical memory range
and it is set to the value of the global parameter memblock current limit, which
is set to the end of low memory region, forcing early boot allocation within the
low memory region, that is the only region the kernel can directly access.

In order to include and support the presence of approximate memory, we
modified the algorithm for computing memblock current limit, forcing it to be
always below the lower limit of the approximate memory physical region. In this
way it is ensured that the bootmem allocator gets free pages only from physical
exact memory.

3.2 Vectors

In order to boot the primary core, the kernel allocates a single 4KB page as
vector page, mapping it to the location of ARM exception vectors at virtual
address 0xFFFF0000 or 0x00000000. When this step is completed, the trap init

function copies the exception vector table, exception stubs, and helpers from
entry-arm.S into the vector page.



4 G.Stazi et al.

In particular, the allocation of the ARM vectors page is performed by the
early alloc function allocator. This allocator cannot exclude approximate mem-
ory, since it does not allow to specify the memory zone. In order to ensure that
the vectors page is never allocated in approximate memory, the implementation
of a new early alloc was required. The new early alloc uses the memblock inter-
face and allow to explicitly indicate an address limit for the allocation request,
in order to exclude approximate memory.

3.3 Approximate memory and DTB

During the boot process, a ”Device Tree Blob” (DTB) file is loaded into memory
by the bootloader and passed to the Linux kernel. This DTB file is a tree data
structure containing nodes that describe the system hardware layout to the Linux
kernel, allowing for platform-specific code to be moved out of kernel sources and
replaced with generic code that can parse the DTB and configure the entire
system as required. Each physical device is indeed described inside the device
tree, in particular it is represented as a node and all its properties are defined
under that node.

In order to support approximate memory management in ARM architectures,
we defined a new DTS file (from which the DTB is generated), specific for each
ARM platform, with a special node for approximate memory (Fig.1 on left).
In particular this node, called approx mem, collects the information about the
physical address range and the size of zone approximate.

memory {
reg = <(baseaddr1) (size1)
(baseaddr2) (size2)
...
(baseaddrN) (sizeN)>;
};

Fig. 1. On left: Memory node in device tree. On right: Vexpress Cortex A9 board
memory map (extract)

4 Experimental results

In this section we describe the results and the architecture setup used to evaluate
the introduction of approximate memory support for early boot allocators in
Linux kernel on ARM architectures.

4.1 Hardware setup

ARM Versatile Express (Vexpress) Cortex A9 has been chosen as the archi-
tecture for performing tests. These tests were run on the emulation platform
AppropinQuo [8], that contains specific approximate memory models for the cho-
sen architecture. Fig. 1 on right shows the memory map of Vexpress Cortex A9,
in particular RAM memory can be present from 0x60000000 to 0x80000000 and



Approximate Memory support for Linux Early Allocators... 5

from 0x84000000 to 0xA000000. We chose to map 128+128 MB of RAM: the first
128MB part is exact, starting from address 0x60000000 to address 0x67FFFFFF
and the second 128MB part, from address 0x68000000 to 0x6FFFFFFF,is ap-
proximate memory. This map was used to configure the emulator and also to set
the corresponding kernel dts file.

4.2 Results

Fig. 2 (left) shows the statistics for the zone normal region, obtained through
the zoneinfo system command. The region contains exact memory, is composed
of 32768 pages; considering that every page in the ARM architecture is 4KB
large, it confirms the availability of 128MB of exact memory. The start pfn
number indicates the start address of exact memory in physical pages (393219×
4096 = 0x60000000). Fig. 2 (right) shows the same statistics for the zone approximate.
The approximate area has 32768 pages; again this confirms that the approximate
region area is 128MB large. The start pfn number indicates the start address of
approximate at address 0x68000000 (425984 × 4096 = 0x68000000). Particular
importance comes from information regarding ‘present’ and ‘managed’ lines. The
latter corresponds to pages managed by the buddy system (the main allocator);
they are computed as the number of present pages minus the number of reserved
pages, including those allocated by the bootmem allocator. Since the number of
present pages matches the number of managed pages, we have the demonstration
that during the boot phase no pages belonging to the zone approximate were
allocated.

cat /proc/zoneinfo
Node 0, zone Normal
pages free 28036
min 167
low 208
high 250
scanned 0
spanned 32768
present 32768
managed 30487
...
start pfn: 393216

cat /proc/zoneinfo
Node 0, zone Approximate pages free 32768
min 180
low 225
high 270
scanned 0
spanned 32768
present 32768
managed 32768
...
start pfn: 425984

Fig. 2. On left: kernel boot logs. On right: zone approximate statistics

Moreover, in order to evaluate the correct memory allocation of apprroxi-
mate physical pages in zone approximate, we run a testbench that requests a
block of 1000 memory pages (about 4MB) from zone approximate. Using the
zoneinfo system command we get the information printed in Fig. 3 before (left)
and after (right) the allocation request. We can see that zone approximate

has 31768 free pages after allocation, confirming that the application allocated
exactly 1000 pages.

5 Conclusions

In this work we analyzed early allocators in Linux kernel, proposed and im-
plemented an extension of their function in order to introduce the support of



6 G.Stazi et al.

cat /proc/zoneinfo
Node 0, zone Approximate pages free 32768
min 180
low 225
high 270
scanned 0
spanned 32768
present 32768
managed 32768
...
start pfn: 425984

cat /proc/zoneinfo
Node 0, zone Approximate pages free 31768
min 180
low 225
high 270
scanned 0
spanned 32768
present 32768
managed 32768
...
start pfn: 425984

Fig. 3. On left: zone approximate statistics before allocations. On right:
zone approximate statistics after allocation

approximate memory in the architecture. This work was done in the specific con-
text of porting approximate memory support on ARM architectures, a widely
adopted architecture in low power embedded systems, but it is valid also for other
architectures that make use of early allocators during the boot process. After
completing the porting we run the kernel on an ARM platform and demonstrated
the correctness of the boot process and of the main allocators, that can now see
and manage the correct number and set of physical pages for the approximate
memory.

References

1. S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving dram
refresh-power through critical data partitioning,” ACM SIGPLAN Notices, vol. 47,
no. 4, pp. 213–224, 2012.

2. J. Lucas, M. Alvarez-Mesa, M. Andersch, and B. Juurlink, “Sparkk: Quality-scalable
approximate storage in dram,” in The memory forum, 2014, pp. 1–9.

3. A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality configurable ap-
proximate dram,” IEEE Transactions on Computers, vol. 66, no. 7, pp. 1172–1187,
2017.

4. F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto, “Approximate srams with
dynamic energy-quality management,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 24, no. 6, pp. 2128–2141, 2016.

5. D. T. Nguyen, H. Kim, H.-J. Lee, and I.-J. Chang, “An approximate memory archi-
tecture for a reduction of refresh power consumption in deep learning applications,”
in Circuits and Systems (ISCAS), 2018 IEEE International Symposium on. IEEE,
2018, pp. 1–5.

6. G. Stazi, L. Adani, A. Mastrandrea, M. Olivieri, and F. Menichelli, “Impact of
approximate memory data allocation on a h.264 software video encoder,” in Ap-
proximate and Transprecision Computing on Emerging Technologies ATCET2018,
Workshop on, 2018.

7. G. Stazi, F. Menichelli, A. Mastrandrea, and M. Olivieri, “Introducing approxi-
mate memory support in linux kernel,” in Ph. D. Research in Microelectronics and
Electronics (PRIME), 2017 13th Conference on. IEEE, 2017, pp. 97–100.

8. F. Menichelli, G. Stazi, A. Mastrandrea, and M. Olivieri, “An emulator for approx-
imate memory platforms based on qemu,” in International Conference on Applica-
tions in Electronics Pervading Industry, Environment and Society. Springer, 2016,
pp. 153–159.


