Skip to main content

ISACHI: Integrated Segmentation and Alignment Correction for Heart Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11395))

Abstract

We address the problem of cardiovascular shape representation from misaligned Cardiovascular Magnetic Resonance (CMR) images. An accurate 3D representation of the heart geometry allows for robust metrics to be calculated for multiple applications, from shape analysis in populations to precise description and quantification of individual anatomies including pathology. Clinical CMR relies on the acquisition of heart images at different breath holds potentially resulting in a misaligned stack of slices. Traditional methods for 3D reconstruction of the heart geometry typically rely on alignment, segmentation and reconstruction independently. We propose a novel method that integrates simultaneous alignment and segmentation refinements to realign slices producing a spatially consistent arrangement of the slices together with their segmentations fitted to the image data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://wp.doc.ic.ac.uk/wbai/data/.

References

  1. Vukicevic, M., Mosadegh, B., Min, J.K., Little, S.H.: Cardiac 3D printing and its future directions. JACC Cardiovasc. Imaging 10(2), 171–184 (2017)

    Article  Google Scholar 

  2. Lopez-Perez, A., Sebastian, R., Ferrero, J.M.: Three-dimensional cardiac computational modelling: methods, features and applications. BioMed. Eng. OnLine 14(1), 35 (2015)

    Article  Google Scholar 

  3. Carminati, M.C., Maffessanti, F., Caiani, E.G.: Nearly automated motion artifacts correction between multi breath-hold short-axis and long-axis cine CMR images. Comput. Biol. Med. 46, 42–50 (2014)

    Article  Google Scholar 

  4. Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S., Frangi, A.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Comput. Aided Surg. 29, 155–195 (2016)

    Google Scholar 

  5. Ehman, R.L., McNamara, M.T., Pallack, M., Hricak, H., Higgins, C.: Magnetic resonance imaging with respiratory gating: techniques and advantages. Am. J. Roentgenol. 143(6), 1175–1182 (1984)

    Article  Google Scholar 

  6. Villard, B., Zacur, E., Dall’Armellina, E., Grau, V.: Correction of slice misalignment in multi-breath-hold cardiac MRI scans. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2016. LNCS, vol. 10124, pp. 30–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52718-5_4

    Chapter  Google Scholar 

  7. Georgescu, B., et al.: Model based automated 4D analysis for real-time free-breathing cardiac MRI. Proc. Int. Soc. Magn. Reson. Med. (ISMRM) 21, 4498 (2013)

    Google Scholar 

  8. Marchesseau, S., Duchateau, N., Delingette, H.: Segmentation and registration coupling from short-axis cine MRI: application to infarct diagnosis. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2016. LNCS, vol. 10124, pp. 48–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52718-5_6

    Chapter  Google Scholar 

  9. Paiement, A., Mirmehdi, M., Xie, X., Hamilton, M.C.K.: Integrated segmentation and interpolation of sparse data. IEEE Trans. Image Process. 23(1), 110–125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Paiement, A., Mirmehdi, M., Xie, X., Hamilton, M.C.K.: Registration and modeling from spaced and misaligned image volumes. IEEE Trans. Image Process. 25(9), 4379–4393 (2016)

    Article  MathSciNet  Google Scholar 

  11. Villard, B., Carapella, V., Ariga, R., Grau, V., Zacur, E.: Cardiac mesh reconstruction from sparse, heterogeneous contours. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 169–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_15

    Chapter  Google Scholar 

  12. Villard, B., Grau, V., Zacur, E.: Surface mesh reconstruction from cardiac MRI contours. J. Imaging 4(1), 16 (2018)

    Article  Google Scholar 

  13. Vigneault, D.M., Xie, W., Bluemke, D.A., Noble, J.A.: Feature tracking cardiac magnetic resonance via deep learning and spline optimization. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 183–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59448-4_18

    Chapter  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CVPR (2016)

    Google Scholar 

  16. Dolz, J., Desrosiers, C., Ayed, I.B.: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study. CoRR abs/1612.03925 (2016)

    Google Scholar 

  17. Patravali, J., Jain, S., Chilamkurthy, S.: 2D-3D fully convolutional neural networks for cardiac MR segmentation. CoRR abs/1707.09813 (2017)

    Google Scholar 

  18. Zotti, C., Luo, Z., Lalande, A., Humbert, O., Jodoin, P.: Novel deep convolution neural network applied to MRI cardiac segmentation. CoRR (2017)

    Google Scholar 

  19. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1395–1403 (2015)

    Google Scholar 

  20. Rohr, K., Stiehl, H., Sprengel, R., Buzug, T., Weese, J., Kuhn, M.: Landmark-based elastic registration using approximating thin-plate splines. IEEE Trans. Med. Imaging 20(6), 526–534 (2001)

    Article  Google Scholar 

  21. Bai, W., et al.: A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion. Med. Image Anal. 26(1), 133–145 (2015)

    Article  Google Scholar 

  22. Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Villard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villard, B., Zacur, E., Grau, V. (2019). ISACHI: Integrated Segmentation and Alignment Correction for Heart Images. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12029-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12028-3

  • Online ISBN: 978-3-030-12029-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics