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Abstract. Difficult image segmentation problems, e.g., left atrium in
MRI, can be addressed by incorporating shape priors to find solutions
that are consistent with known objects. Nonetheless, a single multivari-
ate Gaussian is not an adequate model in cases with significant nonlinear
shape variation or where the prior distribution is multimodal. Nonpara-
metric density estimation is more general, but has a ravenous appetite
for training samples and poses serious challenges in optimization, es-
pecially in high dimensional spaces. Here, we propose a maximum-a-
posteriori formulation that relies on a generative image model by incor-
porating both local intensity and global shape priors. We use deep au-
toencoders to capture the complex intensity distribution while avoiding
the careful selection of hand-crafted features. We formulate the shape
prior as a mixture of Gaussians and learn the corresponding parame-
ters in a high-dimensional shape space rather than pre-projecting onto
a low-dimensional subspace. In segmentation, we treat the identity of
the mixture component as a latent variable and marginalize it within
a generalized expectation-maximization framework. We present a condi-
tional maximization-based scheme that alternates between a closed-form
solution for component-specific shape parameters that provides a global
update-based optimization strategy, and an intensity-based energy min-
imization that translates the global notion of a nonlinear shape prior
into a set of local penalties. We demonstrate our approach on the left
atrial segmentation from gadolinium-enhanced MRI, which is useful in
quantifying the atrial geometry in patients with atrial fibrillation.

Keywords: Statistcal shape models - Autoencoders - Segmentation -
Mixture of Gaussians - Generalized Expectation-Maximization.

1 Introduction

Automatic image segmentation is an important enabling technology in most
medical imaging applications that involve soft tissue imaging, e.g., neurology,
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cardiology, and oncology. In particular, the preoperative anatomical representa-
tion of the left atrium (LA) is important for ablation guidance, fibrosis quantifi-
cation, and biophyiscal modeling in artial fibrillation patients [T2I3I4]. Difficult
segmentation problems typically have two aspects. First, image features, such
as intensity and texture are noisy and unreliable. Second, anatomical bound-
aries are ill-defined, often in the presence of low contrast, background clutter,
and partial volumes, while irregular shapes with high variability limit the abil-
ity to find invariant features. Nonetheless, if one operates in a context with
expectations of particular classes of anatomies (e.g., LA), such challenges can
be addressed by means of shape prior information to guide and constrain the
segmentation process; motivating a Bayesian formulation. In LA segmentation
context, shape-driven methods were found to be the most appropriate in ad-
dressing inherent challenges [5]; thin myocardial wall, surrounding anatomical
structures with similar image intensities, and topological variants pertaining to
pulmonary viens arrangments [6]. In this paper, we propose a Bayesian surface-
based segmentation framework that is based on a mixture-based global shape prior
along with a feature-based local intensity prior.

Traditionally, when dealing with low-quality image segmentation, statistical
shape information has proved to be helpful in delineating correct object bound-
aries (e.g., [1U8]). For example, active shape models [9] and their variants incor-
porate over-restrictive shape constraints in the form of statistical shape models
(SSM) by limiting the solution to some low-dimensional linear subspace defined
via training shape exemplars. However, these approaches are limited in their abil-
ity to accommodate shapes that are not represented in a low-dimensional descrip-
tion; a typical situation arises in applications with small and large-scale shape
variability (e.g., [6]). Further, these methods only handle unimodal Gaussian-
like shape densities. When it comes to modeling complex shape distributions,
a single Gaussian can not adequately model cases of nonlinear shape variation
where the probability distribution is multimodal [10].

On the other end of the spectrum, multiatlas-based segmentation (MAS)
approaches require a large database of atlases to capture wide range of shape
variation where label maps are propagated to the testing image through reg-
istration. In essence, MAS can be viewed as a nonparametric estimate of the
prior probabilities that converges to the true densities with the number of at-
lases [I1]. To reduce the computational burden introduced by registration, atlas
selection is usually performed to exclude irrelevant atlases that might misguide
the segmentation process [12]. Generally, kernel-based methods (e.g., [8I13]) are
popular strategies for dealing with complex distributions in explicitly or implic-
itly represented training data. Under mild assumptions, they converge to the
true distribution in the limit of infinite sample size [I4]. For example, Cremers
et al. [8] used kernel density estimate (KDE) to derive non-linear shape pri-
ors which are based on a shape distance between implicitly embedded training
shapes. Nonetheless, such methods are prone to over-fitting due to small sample
size in high-dimensional shape spaces, limiting the generality of the resulting
models to fit unseen examples. Specifically, in multivariate density estimation,
KDE requires larger kernel width to accommodate more exemplars as the di-
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mension of a variable increases. This will eventually result in model under-fit
due to high bias [I5]. Further, for kernel based methods, the dimension of the
parameter space is proportional to the training sample size.

A finite mizture of Gaussians can approximate a full kernel density, to cap-
ture nonlinearities in the distribution or subpopulations in the underlying shape
subspace [16] where the expectation-maximization (EM) framework is usually
used to find the maximum likelihood estimate of mixture parameters. However,
modeling shape distribution after being projected onto low-dimensional subspace
(e.g., [14I16]) will often collapse or mix the subpopulations, which would derail
learning of the mixture structure of the underlying shape space [I7]. Nonlinear-
ity of shape statistics can also be modeled by lifting training shapes to a higher,
probably infinite, dimensional feature (a.k.a. kernel) space where the shape dis-
tribution is assumed to be Gaussian distributed [I0], yet this approach results
in an infinite-dimensional optimization scheme while sacrificing the efficiency of
optimizing in low-dimensional subspaces [14]. Further, one can settle for only an
approximate solution for the reverse mapping from feature space to shape space.

The proposed bayesian formulation relies on a maximum-a-posteriori estima-
tion from a generative statistical model that incorporates global, nonlinear shape
priors modeled as a mixture of Gaussian components, and local, nonlinear in-
tensity prior as automatically learned image features via deep autoencoders. The
Gaussian mixture model (GMM) takes into account the linear subspace spanned
by each mixture component to avoid the classical problem of model over fitting
in high-dimensional spaces [I8], and can adequetely model non-linear shape vari-
ations. To use these shape priors in segmentation, we treat the identity of the
mixture component as a latent variable while marginalizing it within a general-
ized expectation-maximization framework (GEM) [I9]. We present a conditional
maximization-based scheme that alternates between a closed-form solution for
component-specific shape parameters that provides a global update-based opti-
mization strategy, and an intensity-based energy minimization that translates
the global notion of a nonlinear shape prior into a set of local penalties. Prelim-
inary results show improved accuracy from traditional shape-based approaches.

2 Methods

Given an image Z € RP where D is the total number of voxels and Z(x) is
the intensity value of the voxel located at x € R?, the Bayesian formulation of
the segmentation problem amounts to finding the optimal surface S* that maxi-
mizes the log-posterior probability p(S|Z), where a shape’s surface is represented
by a dense set of geometrically consistent M — points (landmarks) {x$}*,. In
order to obtain segmentations that preserve the global shape characteristics of
the shape population of interest, the segmentation process is influenced by the
prior, in the form of the shape probability distribution. We model such a prior
distribution as a finite mixture of Gaussians, parameterized by the mixture com-
ponent identity Z, which is treated as a latent variable, and the model param-
eters {O,}£ | for K—components. Hence, given a latent variable Z = z, the
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log-posterior can be written adT
logp(S|Z) = logp(S, Z = 2|T) —logp(Z = 2|5,T), (1)

where p(Z|S,Z) defines a conditional probability of the latent variable Z given
the input image Z and the estimated surface S.

2.1 Generalized EM for shape-driven segmentation

The use of log-posterior allows us to marginalize the over the latent variable
Z. Using generalized expectation-mazimization (GEM) [I9, p. 318], we iterate
to find the mode of the marginal posterior p(S|Z) by averaging over the latent
variable Z. GEM starts with an initial estimate S° of the surface and iteratively
refines it by marginalizing over Z. Within each iteration, the posterior p(S|Z)
is guaranteed to increase, i.e., converge to a local maxima. Given the current
surface guess S®), GEM consists of two steps: (1) E-step, which computes the
latent conditional probability distribution p(Z|S®",Z) VZ € {1,..,K} and (2)
M-step, which finds a new surface S**1) such that p(S¢+|T) > p(S®|Z). The
details of the algorithm are as follows.

E-step: The conditional probability of the latent variable Z given the input
image and its labeling function can be computed as,
p(ZIS™, 2)p(SP|Z)p(2)

p(le(t)vz) = p(I|S(t))p(S(t)) (2)

where the intensity model p(Z|S®), Z) in the vicinity of the current surface guess
S® is assumed to be conditionally independent of the shape generating com-
ponent, leaving the E-step to be fully shape-driven. Note the effect of the prior
probability p(Z) on the expectation step, where the conditional component dis-
tribution would favor mixture components with higher support/proportion, the
M-step afterwards would pull the new surface towards the most probable mixture
component(s) which generated the shape to be segmented as being compatible
with the local intensity and global shape priors.

M-step: Taking the expectations on both sides of while treating Z as a
random variable with the distribution p(Z|S®, ) yields,
log p(S|Z) = Ep 2150 1) log p(S, 21T)] — Epzs0 1) logp(Z(S,T)]  (3)

where the left side of does not depend on Z. The second term in is
maximized when & = S (the key result of EM [19]). Hence, it is sufficient for
the new surface estimate St1 to maximize the first term of , which is the
expected complete-data log-likelihood.

K
S = arg max Z p(Z|S(t),I) logp(S, Z|T)
z=1

K
ocargmax Y | p(2|8,I) {log p(Z|S. Z) +log p(S|Z) +log p(2)} (4)
Z=1

! For notational simplicity, we will refer to p(Z = z) = p(2) hereafter.
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The intensity term p(Z|S, Z) gives rise to an intensity model in the vicinity of
an estimated surface that resembles the Z—th component. Intensity features
(learned via a deep autoencoder [20]) F# are assumed to follow a normal distri-
bution in the learned feature space with parameters ©7 = {u7, X/} that are
estimated from the training data, where " is the mean intensity feature at the
i—th point and X7 is the corresponding covariance matrix. Notice that S (t+1)
increases the first term of since it is obtained based on its maximization. In
addition, S¢*1 decreases the second term of , because such a term is maxi-
mized only when & = S®). Hence, if S+ = S then the GEM method has
converged to a local maxima of the posterior p(S|Z).

2.2 Mixture modeling of global shape priors

The combination of high dimensional shape space and a small number of example
shapes usually makes modeling of shape priors subject to curse-of-dimensionality,
which hinders the effectiveness of mixture learning and density estimation in high
dimensional spaces. To avoid over fitting, we can parameterize the covariance ma-
trix of a component, in a manner similar to [I8], through its eigen decomposition.
Hence we can learn the Gaussian mixture model taking into consideration the
dominant linear subspace spanned by each mixture component, where the noise
variance is assumed to be isotropic and contained in a subspace orthogonal to
the component’s subspace.

We first model a dense set
of M homologous landmarks via
particle based modeling. Assume
that the anatomy-specific shape
space of all shapes defined us-
ing the M —landmarks representa-
tion is comprised of K —mixture
components. Each component is pa-
rameterized by O, = {mp, pk, Ak,
Uy, di, 0} and learned via high-
dimensional EM [I8] where 7, =
p(Z = k) is the component prob-
ability /proportion, pyj is the mean
vector, dj is the intrinsic dimension
of the k—th mixture component, i.e.,

GMM of Global Shape Priors

P
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Fig. 1: Low-dimensional subspace representa-
tion of high-demensional shape data. Each
sample in the training set is represented by a
. single point with color representing different
the number of dominant modes of components of the GMM. An example seg-

Shape Varl.atllon, Apisa dlagonal. ma-  mentation from each component is included
trix containing the largest dy eigen- +t¢ illustrate differences.

values of the component’s full co-

variance matrix X, Uy is the orthonormal matrix containing the corresponding
dy, eigenvectors, and oy, is the standard deviation of the off-subspace noise. Hence
the component-specific subspace Sy can be defined as follows:

Sk = {80 = e+ WB | S & RMP, B,  R™} (5)
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where 3, € R% encodes the shape parameters w.r.t. the k—th component sub-
space Si.The shape probability distribution p(S) is defined as a weighted sum
of component-conditional probabilities {p(S|0)}E | using the mixture weights
{m}. Notice, that the component-wise model beyond the first d, modes consists
of an isotropic variance in the directions orthogonal to the subspace, which has
the effect of penalizing point wise differences from the learned, dj-dimensional
subspace. Hence, the surface probability conditional on the k—th mixture com-
ponent becomes a product of two marginal and indepepdent Gaussians; within-
subpace and off-subspace [I§].

We illustrate this training step in Fig. [I} These data are from the samples
selected for training and illustrate a low-dimensional subspace embedding of
every sample colored according to their class membership in a mixture model
of 3 components along with example LA segmentations from each. One can
observe key differences between each component such as the number and shape
of pulmonary veins.

2.3 Autoencoding local intensity priors

Similar to the active shape model (ASM) ap-
proach of [I6], we model local intensity pro-
files at the object surface consisting of the
normalized first derivative of image intensi-
ties oriented along the approximate normal
to the surface and centered at each landmark
location, with radius of ¢ voxels with total
length of L = 2¢+1 (Fig.[2|). Corresponding
profiles (i.e., those that share the same land-
marks ) are combined across all training im-
ages but are treated independently of one an-
other. The traditional approach to segmen-
tation is to use the Mahalanobis distance of
candidate profiles to the training data as a cost function to be minimized, how-
ever, it assumes the feature space to be first order linear and normally dis-
tributed. In order to overcome this limitation, we employ deep autoencoders
to adaptively learn the higher order non-linear features. In this case, we use a
2 layer x 10 hidden units sparse autoencoder to generate pseudolinear repre-
sentations of the feature space for each landmark. Due to the computationally
expensive nature of this step we determined these parameters through a qualita-
tive empirical analysis but there is potential for improvement via more rigorous
cross-validation. To improve the statistics and capture lateral intensity changes,
we append additional profiles which are parallel to the main profile and, offset by
a subvoxel distance, with interpolated intensity values, to form “thick” profiles.
We repeat this for multiple image resolutions and store the autoencoder as well
as the encoded output.

Fig. 2: Intensity gradients across the
segmentation surface are taken at
each point location.
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2.4 Segmentation via conditional maximization

The marginal posterior optimization problem in involves two types of latent
variables, the labeling function to be estimated S and the component-specific
shape parameters 3. To seek an optimal solution for S, we propose a conditional
mazimization-based scheme [19] p. 312] that alternates between two optimization
phases. In the first phase, we optimize for {3}, given S, and in the second
phase we optimize for S given individual shape parameters {3;}< . Starting
with the coarsest image resolution, we take the mean landmark positions from
the training data as the initial model and iterate through these steps.

Localized feature-based optimization: For each landmark position, we gen-
erate a series of overlapping profiles of L—dimension that extend above and below
the original profile by some specified search length s. For each of these candidate
profiles, we generate features using pre-trained autoencoders. We then take the
Mahalanobis distance of each candidate profile to the encoded training features
and update the landmark position to the center of the optimal profile, oen with
the smallest distance. This step ensures that landmarks are locally optimal, but
they may no longer by globally optimal as there is no shape information encoded
into these features.

Component-specific shape parameters optimization: For a given surface
S (from the intensity-based step), component-specific shape parameters 3 can
be obtained by projecting the surface onto the component-specific subpace, lead-
ing a closed-form solution By = ¥ (S — ). By limiting the model parameters
to what is considered a normal contour with respect to shape, the landmark
positions become globally optimal. We repeat this a predetermined number of
times at each resolution, coarse to fine.

3 Results

We tested these methods on 100 3D MRI images, separated into 80 for training
and 20 for testing. Fig. [3]shows a sample MRI image with the provided segmen-
tation. The segmented volume is also separately displayed in blue along with
modeled landmark positions. We first develop a shape model of 2048 homologous
landmark positions modeled with a 3 component Gaussian mixture model. We
then model local intensity gradients for each position across all samples using an
autoencoder on profiles 11 voxels in length (optimized through cross-validation).
In order to improve model statistics, we encode additional parallel information to
create "thick” profiles. This model was then used to segment the 20 test images
according to the methods described above. To compare the effectiveness of our
method we evaluate results both with and without autoencoded local intensity
profiles as well as with and without the mixture model. Results are in Table
. While there appears to be some improvement in median Dice coefficient, this
may not be the best metric for evaluating the efficiency of the proposed method
[21]. We also evaluated the euclidean distance between final landmark positions
from our segmentations to those of the ground truth. This also allows for a more
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detailed point by point analysis of error as shown in Fig. [dl Here we see two ex-
amples from the test data set showing clear improvement in segmentation results
when using autoencoded profiles. We truncate the color scale at 10 (1 cm) and
flag any higher error as an extreme outlier. Error is generally limited to image
edges around the pulmonary veins when using autoencoded intensity profiles as
opposed to nearly universally high error without. These results could be further
improved by initializing the model with the component mean shapes as opposed
to the global mean which is how we are presently doing it.

.;\‘zr(:s. ]

10cm

P [
(a) MRI test image (b) Original segmentation
Fig.3: MRI image (a) of test sample next to LA segmentation with landmarks (b).

Table 1: Dice scores for test results.

Autoencoder yes | yes | no | no

Mixture Model yes | no | yes | no
Median Dice Coefficient|0.743|0.747|0.729|0.739

Ground Truth AE + GMM AE only GMM only Original

s ] L ) i
LI ‘,:3 y = o % /O'"\\
s =
‘» K\u
0 1 2 3 4

Error (mm)
5 6

Fig. 4: Example results for 2 different samples with point by point error mapped onto
segmentation surface. AE = autoencoder, GMM = mixture modeling, Original = nei-
ther (original ASM method).
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4 Conclusion

This paper proposed a shape/feature-based generative model for left atrium seg-
mentation by modeling non-Gaussian global shape priors as mixture of Gaussians
on landmark-based representations of training data and learning feature-based
representations for local intensity priors. The mixture parameters were learned
in the high dimensional shape space by taking into account component-specific
subspaces to avoid over fitting. The method used a variant of ASM-based seg-
mentation framework that relies on a maximum a-posteriori estimation with
a marginalization over class membership within a generalized EM framework.
While these results are preliminary, they suggest that ASMs for LA segmen-
tation can be improved through optimized prior modeling. Local optimization
through autoencoding of non-linear intensity features and global optimization
through mixture modeling of shape parameters increases the accuracy of the
original method
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