Skip to main content

Autonomous Vehicles: State of the Art, Future Trends, and Challenges

  • Chapter
  • First Online:

Abstract

Autonomous vehicles are considered to be the next big thing. Several companies are racing to put self-driving vehicles on the road by 2020. Regulations and standards are not ready for such a change. New technologies, such as the intensive use of machine learning, are bringing new solutions but also opening new challenges. This chapter reports the state of the art, future trends, and challenges of autonomous vehicles, with a special focus on software. One of the major challenges we further elaborate on is using machine learning techniques in order to deal with uncertainties that characterize the environments in which autonomous vehicles will need to operate while guaranteeing safety properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demonstration. Robot Auton Syst 57(5):469–483

    Article  Google Scholar 

  2. Autili M, Cortellessa V, Di Ruscio D, Inverardi P, Pelliccione P, Tivoli M (2011) Eagle: engineering software in the ubiquitous globe by leveraging uncertainty. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of software engineering, ESEC/FSE ’11. ACM, New York, NY, pp 488–491. https://doi.org/10.1145/2025113.2025199

    Google Scholar 

  3. Bacha A, Bauman C, Faruque R, Fleming M, Terwelp C, Reinholtz C, Hong D, Wicks A, Alberi T, Anderson D, Cacciola S, Currier P, Dalton A, Farmer J, Hurdus J, Kimmel S, King P, Taylor A, Covern DV, Webster M (2008) Odin: team VictorTango’s entry in the DARPA urban challenge. J Field Robot 25(9):467–492. https://doi.org/10.1002/rob.v25:8

    Article  Google Scholar 

  4. Baker CR, Dolan JM (2008) Traffic interaction in the urban challenge: putting boss on its best behavior. In: IROS, pp 1752–1758

    Google Scholar 

  5. Behere S, Törngren M (2016) A functional reference architecture for autonomous driving. Inf Softw Technol 73:136–150

    Article  Google Scholar 

  6. Berger C, Dukaczewski M (2014) Comparison of architectural design decisions for resource-constrained self-driving cars – a multiple case-study. In: Plödereder E, Grunske L, Schneider E, Ull D (eds) Proceedings of the INFORMATIK 2014, Gesellschaft für Informatik e.V. (GI), Stuttgart, pp 2157–2168. http://subs.emis.de/LNI/Proceedings/Proceedings232/2157.pdf

  7. Berger C, Rumpe B (2012) Autonomous driving – 5 years after the urban challenge: the anticipatory vehicle as a cyber-physical system. In: Goltz U, Magnor M, Appelrath HJ, Matthies HK, Balke WT, Wolf L (eds) Proceedings of the INFORMATIK 2012, Braunschweig, pp 789–798. https://arxiv.org/pdf/1409.0413v1.pdf

  8. Berger C, Rumpe B (2012) Engineering autonomous driving software. In: Rouff C, Hinchey M (eds) Experience from the DARPA urban challenge. Springer, London, pp 243–271. https://doi.org/10.1007/978-0-85729-772-3_10

    Chapter  Google Scholar 

  9. Berger C, Nguyen B, Benderius O (2017) Containerized development and microservices for self-driving vehicles: experiences & best practices. In: Proceedings of the third international workshop on automotive software architectures (WASA), p 6

    Google Scholar 

  10. Berns A, Ghosh S (2009) Dissecting self-* properties. In: Third IEEE international conference on self-adaptive and self-organizing systems, 2009. SASO’09. IEEE, Piscataway, pp 10–19

    Google Scholar 

  11. Bila C, Sivrikaya F, Khan MA, Albayrak S (2017) Vehicles of the future: a survey of research on safety issues. IEEE Trans Intell Transp Syst 18(5):1046–1065

    Article  Google Scholar 

  12. Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang J, et al (2016) End to end learning for self-driving cars. arXiv preprint arXiv:160407316

    Google Scholar 

  13. Brun Y, Serugendo GDM, Gacek C, Giese H, Kienle HM, Litoiu M, Müller HA, Pezzè M, Shaw M (2009) Engineering self-adaptive systems through feedback loops. In: Software engineering for self-adaptive systems, vol 5525. Springer, Berlin, pp 48–70

    Chapter  Google Scholar 

  14. Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER Jr, Mitchell TM (2010) Toward an architecture for never-ending language learning. In: AAAI, vol 5, p 3

    Google Scholar 

  15. Chavez-Garcia RO, Aycard O (2016) Multiple sensor fusion and classification for moving object detection and tracking. IEEE Trans Intell Transp Syst 17(2):525–534

    Article  Google Scholar 

  16. Cheng BH, Giese H, Inverardi P, Magee J, de Lemos R, Andersson J, Becker B, Bencomo N, Brun Y, Cukic B, et al (2008) Software engineering for self-adaptive systems: a research road map. In: Dagstuhl seminar proceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik

    Google Scholar 

  17. de Lemos R et al (2013) Software engineering for self-adaptive systems: a second research roadmap. In: Software engineering for self-adaptive systems II. Springer, Berlin, pp 1–32

    Chapter  Google Scholar 

  18. Dollar P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761

    Article  Google Scholar 

  19. El Sallab A, Abdou M, Perot E (2017) Deep reinforcement learning framework for autonomous driving. In: Electronic imaging. Autonomous vehicles and machines

    Google Scholar 

  20. Eliasson U, Heldal R, Lantz J, Berger C (2014) Agile model-driven engineering in mechatronic systems-an industrial case study. In: International conference on model driven engineering languages and systems. Springer, Cham, pp 433–449

    Google Scholar 

  21. Esfahani N, Malek S (2013) Uncertainty in self-adaptive software systems. Springer, Berlin, pp 214–238. https://doi.org/10.1007/978-3-642-35813-5_9

    Book  Google Scholar 

  22. Fleming B (2014) An overview of advances in automotive electronics [automotive electronics]. IEEE Veh Technol Mag 9(1):4–9. https://doi.org/10.1109/MVT.2013.2295285

    Article  Google Scholar 

  23. Florbäck J, Tornberg L, Mohammadiha N (2016) Offline object matching and evaluation process for verification of autonomous driving. In: International conference on intelligent transportation systems (ITSC), pp 107–112. https://doi.org/10.1109/ITSC.2016.7795539

  24. Garlan D (2010) Software engineering in an uncertain world. In: Proceedings of the FSE/SDP workshop on future of software engineering research, FoSER ’10. ACM, New York, NY, pp 125–128. https://doi.org/10.1145/1882362.1882389

    Chapter  Google Scholar 

  25. Giaimo F, Berger C (2017) Design criteria to architect continuous experimentation for self-driving vehicles. In: Proceedings of the international conference on software architecture (ICSA), pp 203–210. http://arxiv.org/abs/1705.05170

  26. Hammett R (2001) Design by extrapolation: an evaluation of fault-tolerant avionics. In: 20th DASC. 20th Digital avionics systems conference (Cat. No.01CH37219), vol 1, pp 1C5/1–1C5/12. https://doi.org/10.1109/DASC.2001.963314

  27. ISO/IEC (2011) ISO/IEC/IEEE 42010:2011 Systems and software engineering – architecture description. https://www.iso.org/standard/50508.html

  28. Kalra N, Paddock SM (2016) Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp Res A Policy Pract 94:182–193

    Article  Google Scholar 

  29. Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50

    Article  MathSciNet  Google Scholar 

  30. Knauss E, Pelliccione P, Heldal R, gren M, Hellman S, Maniette D (2016) Continuous integration beyond the team: a tooling perspective on challenges in the automotive industry. In: Proceedings of ESEM ’16. ACM, New York. https://doi.org/10.1145/2961111.2962639

  31. Knauss A, Schroeder J, Berger C, Eriksson H (2017) Paving the roadway for safety of automated vehicles: an empirical study on testing challenges. In: Proceedings of intelligent vehicle symposium (IV)

    Google Scholar 

  32. Koopman P, Wagner M (2016) Challenges in autonomous vehicle testing and validation. Technical report, Carnegie Mellon University; Edge Case Research LLC

    Google Scholar 

  33. Koopman P, Wagner M (2016) Challenges in autonomous vehicle testing and validation. SAE Int J Transp Saf 4(1):15–24

    Article  Google Scholar 

  34. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  35. Lu Z, Happee R, Cabrall C, Kyriakidis M, de Winter J (2016) Human factors of transitions in automated driving: a general framework and literature survey. Transp Res F 43:183–198

    Article  Google Scholar 

  36. Maldonado-Bascon S, Lafuente-Arroyo S, Gil-Jimenez P, Gomez-Moreno H, López-Ferreras F (2007) Road-sign detection and recognition based on support vector machines. IEEE Trans Intell Transp Syst 8(2):264–278

    Article  Google Scholar 

  37. Mallozzi P (2017) Combining machine-learning with invariants assurance techniques for autonomous systems. In: Proceedings of the 39th international conference on software engineering companion. IEEE, Piscataway, pp 485–486

    Google Scholar 

  38. Martens M, van den Beukel A (2013) The road to automated driving: dual mode and human factors considerations. In: Proceedings of conference on intelligent transportation systems, pp 2262–2267

    Google Scholar 

  39. Masek P, Thulin M, Andrade H, Berger C, Benderius O (2016) Systematic evaluation of sandboxed software deployment for real-time software on the example of a self-driving heavy vehicle. In: Proceedings of the 19th IEEE intelligent transportation systems conference (ITSC), pp 2398–2403. https://doi.org/10.1109/ITSC.2016.7795942, http://ieeexplore.ieee.org/abstract/document/7795942/

  40. Montemerlo M, Thrun S, Koller D, Wegbreit B, et al (2002) Fastslam: a factored solution to the simultaneous localization and mapping problem. In: Aaai/iaai, pp 593–598

    Google Scholar 

  41. Montemerlo M, Becker J, Bhat S, Dahlkamp H, Dolgov D, Ettinger S, Haehnel D, Hilden T, Hoffmann G, Huhnke B, Johnston D, Klumpp S, Langer D, Levandowski A, Levinson J, Marcil J, Orenstein D, Paefgen J, Penny I, Petrovskaya A, Pflueger M, Stanek G, Stavens D, Vogt A, Thrun S (2008) Junior: the Stanford entry in the urban challenge. J Field Robot 25(9):569–597. https://doi.org/10.1002/rob.v25:9, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6681152

  42. Nassim NT (2007) The black swan: the impact of the highly improbable. Random House, New York

    Google Scholar 

  43. Panahandeh G, Ek E, Mohammadiha N (2017) Road friction estimation for connected vehicles using supervised machine learning. In: IEEE intelligent vehicles symposium (IV)

    Google Scholar 

  44. Parno B, Perrig A (2005) Challenges in securing vehicular networks. In: Workshop on hot topics in networks (HotNets-IV)

    Google Scholar 

  45. Pelliccione P, Knauss E, Heldal R, Ågren SM, Mallozzi P, Alminger A, Borgentun D (2017) Automotive architecture framework: the experience of Volvo cars. J Syst Archit 77:83–100. https://doi.org/10.1016/j.sysarc.2017.02.005, http://www.sciencedirect.com/science/article/pii/S1383762117300954

    Article  Google Scholar 

  46. Pelliccione P, Kobetski A, Larsson T, Aramrattan M, Aderum T, gren M, Jonsson G, Heldal R, Bergenhem C, Thorsén A (2017) Architecting cars as constituents of a system of systems. In: Software-intensive systems-of-systems. ACM, New York

    Google Scholar 

  47. Pinheiro P, Collobert R (2014) Recurrent convolutional neural networks for scene labeling. In: International conference on machine learning, pp 82–90

    Google Scholar 

  48. Rauskolb FW, Berger K, Lipski C, Magnor M, Cornelsen K, Effertz J, Form T, Graefe F, Ohl S, Schumacher W, Wille JM, Hecker P, Nothdurft T, Doering M, Homeier K, Morgenroth J, Wolf L, Basarke C, Berger C, Gülke T, Klose F, Rumpe B (2008) Caroline: an autonomously driving vehicle for urban environments. J Field Robot 25(9):674–724. https://doi.org/10.1002/rob.20254

    Article  Google Scholar 

  49. Russell S, Norvig P, Intelligence A (1995) A modern approach. Artificial Intelligence Prentice-Hall, Englewood Cliffs, pp 25–27

    Google Scholar 

  50. Salehie M, Tahvildari L (2009) Self-adaptive software: landscape and research challenges. ACM Trans Auton Adapt Syst 4(2):14

    Article  Google Scholar 

  51. Schmittner C, Ma Z, Gruber T (2014) Standardization challenges for safety and security of connected, automated and intelligent vehicles. In: 2014 International conference on connected vehicles and expo (ICCVE), pp 941–942

    Google Scholar 

  52. Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo JF, Dennison D (2015) Hidden technical debt in machine learning systems. In: Advances in neural information processing systems, pp 2503–2511

    Google Scholar 

  53. Shalev-Shwartz S, Ben-Zrihem N, Cohen A, Shashua A (2016) Long-term planning by short-term prediction. arXiv preprint arXiv:160201580

    Google Scholar 

  54. Ståhl D, Bosch J (2014) Modeling continuous integration practice differences in industry software development. J Syst Softw 87:48–59. https://doi.org/10.1016/j.jss.2013.08.032

    Article  Google Scholar 

  55. Sutcliffe A, Sawyer P (2013) Requirements elicitation: towards the unknown unknowns. In: 2013 21st IEEE international requirements engineering conference (RE). IEEE, Piscataway, pp 92–104

    Chapter  Google Scholar 

  56. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction, vol 1. MIT Press, Cambridge

    MATH  Google Scholar 

  57. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2016) Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:160207261

    Google Scholar 

  58. Tashvir A, Sjöberg J, Mohammadiha N (2017) Sensor error prediction and anomaly detection using neural networks. In: The first Swedish symposium on deep learning (SSDL)

    Google Scholar 

  59. Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, Hoffmann G, Lau K, Oakley C, Palatucci M, Pratt V, Stang P, Strohband S, Dupont C, Jendrossek LE, Koelen C, Markey C, Rummel C, van Niekerk J, Jensen E, Alessandrini P, Bradski G, Davies B, Ettinger S, Kaehler A, Nefian A, Mahoney P (2006) Stanley: the robot that won the DARPA grand challenge. J Field Robot 23(9):661–692. https://doi.org/10.1002/rob.20147

    Article  Google Scholar 

  60. Wintersbeger P, Green P, Riener A (2017) Am I driving or are you or are we both? A taxonomy for handover and handback in automated driving. In: Proceedings of driving assessment conference

    Google Scholar 

  61. Zeeb K, Buchner A, Schrauf M (2015) What determines the take-over time? An integrated model approach of driver take-over after automated driving. Accid Anal Prev 78:212–221

    Article  Google Scholar 

  62. Zeeb K, Buchner A, Schrauf M (2016) Is take-over time all that matters? The impact of visual-cognitive load on driver take-over quality after conditionally automated driving. Accid Anal Prev 92:230–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiuseppe Mallozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallozzi, P., Pelliccione, P., Knauss, A., Berger, C., Mohammadiha, N. (2019). Autonomous Vehicles: State of the Art, Future Trends, and Challenges. In: Dajsuren, Y., van den Brand, M. (eds) Automotive Systems and Software Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-12157-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12157-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12156-3

  • Online ISBN: 978-3-030-12157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics