Skip to main content

Weak-Perspective and Scaled-Orthographic Structure from Motion with Missing Data

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics – Theory and Applications (VISIGRAPP 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 983))

  • 567 Accesses

Abstract

Perspective n-Point (PnP) problem is in focus of 3D computer vision community since the late 80’s. Standard solutions deal with the pinhole camera model, the problem is challenging due to the perspectivity. The well-known PnP algorithms assume that the intrinsic camera parameters are known, therefore, only extrinsic ones are needed to estimate. It is carried out by a rough estimation, usually given in closed forms, then the accurate camera parameters are obtained via numerical optimization. In this paper, we show that both the weak-perspective and scaled orthographic camera models can be optimally calibrated including the intrinsic camera parameters. Moreover, the latter one is done without iteration if the \(L_2\) norm is used. It is also shown that the calibration can be inserted into a structure from motion algorithm. We also show that the scaled orthographic version can be powered by GPUs, yielding real-time performance.

Supported by EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control Technologies – The Project is supported by the Hungarian Government and co-financed by the European Social Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The transpose of the adjoint is also called the matrix of cofactors.

  2. 2.

    Available at http://thehuwaldtfamily.org/java/Packages/MathTools/MathTools.html.

  3. 3.

    \(A \odot B = C\) if \(c_{ij}=a_{ij} \cdot b_{ij}\).

  4. 4.

    This task is usually called triangulation. This term comes from stereo vision where the camera centers and the 3D position of the point form a triangle.

  5. 5.

    We tried the orthographic projection model with/without scale as well, the results had similar characteristics. Only the fully perspective test generation is contained in this paper due to the page limit.

  6. 6.

    http://users.ics.forth.gr/~lourakis/sba/.

  7. 7.

    http://math.nist.gov/javanumerics/jama/.

  8. 8.

    http://www.robots.ox.ac.uk/~amb/.

References

  1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. PAMI 9(5), 698–700 (1987)

    Article  Google Scholar 

  2. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  3. Björck, Å.: Numerical Methods for Least Squares Problems. Siam, Philadelphia (1996)

    Book  Google Scholar 

  4. Buchanan, A.M., Fitzgibbon, A.W.: Damped Newton algorithms for matrix factorization with missing data. In: Proceedings of the 2005 IEEE CVPR, pp. 316–322 (2005)

    Google Scholar 

  5. Bue, A.D., Xavier, J., Agapito, L., Paladini, M.: Bilinear modeling via augmented lagrange multipliers (balm). IEEE Trans. PAMI 34(8), 1496–1508 (2012)

    Article  Google Scholar 

  6. Choudhary, S., Gupta, S., Narayanan, P.J.: Practical time bundle adjustment for 3D reconstruction on the GPU. In: Kutulakos, K.N. (ed.) ECCV 2010. LNCS, vol. 6554, pp. 423–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35740-4_33

    Chapter  Google Scholar 

  7. DeMenthon, D.F., Davis, L.S.: Model-based object pose in 25 lines of code. IJCV 15, 123–141 (1995)

    Article  Google Scholar 

  8. Hajder, L.: W-PnP method: optimal solution for the weak-perspective n-Point problem and its application to structure from motion. In: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), pp. 265–276 (2017)

    Google Scholar 

  9. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Hartley, R., Kahl, F.: Optimal algorithms in multiview geometry. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007. LNCS, vol. 4843, pp. 13–34. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76386-4_2

    Chapter  Google Scholar 

  11. Hartley, R., Schaffalitzky, F.: Powerfactorization: 3D reconstruction with missing or uncertain data (2003)

    Google Scholar 

  12. Hesch, J.A., Roumeliotis, S.I.: A direct least-squares (DLS) method for PnP. In: International Conference on Computer Vision, pp. 383–390. IEEE (2011)

    Google Scholar 

  13. Horaud, R., Dornaika, F., Lamiroy, B., Christy, S.: Object pose: the link between weak perspective, paraperspective and full perspective. Int. J. Comput. Vis. 22(2), 173–189 (1997)

    Article  Google Scholar 

  14. Horn, B., Hilden, H., Negahdaripourt, S.: Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. 5(7), 1127–1135 (1988)

    Article  MathSciNet  Google Scholar 

  15. Jenkins, M.A., Traub, J.F.: A three-stage variables-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Numer. Math. 14, 252–263 (1970)

    Article  MathSciNet  Google Scholar 

  16. Kahl, F., Hartley, R.I.: Multiple-view geometry under the linfinity-norm. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1603–1617 (2008)

    Article  Google Scholar 

  17. Kanatani, K., Sugaya, Y., Ackermann, H.: Uncalibrated factorization using a variable symmetric affine camera. IEICE - Trans. Inf. Syst. E90-D(5), 851–858 (2007)

    Article  Google Scholar 

  18. Kazó, C., Hajder, L.: Rapid weak-perspective structure from motion with missing data. In: ICCV Workshops, pp. 491–498 (2011)

    Google Scholar 

  19. Ke, Q., Kanade, T.: Quasiconvex optimization for robust geometric reconstruction. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, ICCV 2005, pp. 986–993 (2005)

    Google Scholar 

  20. Hajder, L., Pernek, Á., Kazó, C.: Weak-perspective structure from motion by fast alternation. Vis. Comput. 27(5), 387–399 (2011)

    Article  Google Scholar 

  21. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 81(2), 155–166 (2009)

    Article  Google Scholar 

  22. Marques, M., Costeira, J.: Estimating 3D shape from degenerate sequences with missing data. CVIU 113(2), 261–272 (2009)

    Google Scholar 

  23. Okatani, T., Deguchi, K.: On the Wiberg algorithm for matrix factorization in the presence of missing components. IJCV 72(3), 329–337 (2006)

    Article  Google Scholar 

  24. Pernek, A., Hajder, L., Kazó, C.: Metric reconstruction with missing data under weak-perspective. In: BMVC, pp. 109–116 (2008)

    Google Scholar 

  25. Poelman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. PAMI 19(3), 312–322 (1997)

    Article  Google Scholar 

  26. Ruhe, A.: Numerical computation of principal components when several observations are missing. Technical report, Umea Univesity, Sweden (1974)

    Google Scholar 

  27. Schweighofer, G., Pinz, A.: Globally optimal O(n) solution to the PnP problem for general camera models. In: BMVC (2008)

    Google Scholar 

  28. Shum, H.Y., Ikeuchi, K., Reddy, R.: Principal component analysis with missing data and its application to polyhedral object modeling. IEEE Trans. Pattern Anal. Mach. Intell. 17(9), 854–867 (1995)

    Article  Google Scholar 

  29. Stühmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 11–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15986-2_2

    Chapter  Google Scholar 

  30. Sturm, P., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 709–720. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61123-1_183

    Chapter  Google Scholar 

  31. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization approach. Int. J. Comput. Vis. 9, 137–154 (1992)

    Article  Google Scholar 

  32. Tomasi, C., Shi, J.: Good features to track. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  33. Tzevanidis, K., Zabulis, X., Sarmis, T., Koutlemanis, P., Kyriazis, N., Argyros, A.: From multiple views to textured 3D meshes: a GPU-powered approach. In: Kutulakos, K.N. (ed.) ECCV 2010. LNCS, vol. 6554, pp. 384–397. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35740-4_30

    Chapter  Google Scholar 

  34. Wang, G., Wu, Q.M.J., Sun, G.: Quasi-perspective projection with applications to 3D factorization from uncalibrated image sequences. In: CVPR (2008)

    Google Scholar 

  35. Weinshall, D., Tomasi, C.: Linear and incremental acquisition of invariant shape models from image sequences. IEEE Trans. PAMI 17(5), 512–517 (1995)

    Article  Google Scholar 

  36. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. PAMI 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  37. Zheng, Y., Kuang, Y., Sugimoto, S., Åström, K., Okutomi, M.: Revisiting the PnP problem: a fast, general and optimal solution. In: ICCV, pp. 2344–2351 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Hajder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hajder, L. (2019). Weak-Perspective and Scaled-Orthographic Structure from Motion with Missing Data. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics – Theory and Applications. VISIGRAPP 2017. Communications in Computer and Information Science, vol 983. Springer, Cham. https://doi.org/10.1007/978-3-030-12209-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12209-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12208-9

  • Online ISBN: 978-3-030-12209-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics