Skip to main content

An Experimental Study of Regression Techniques for the Residential Energy Consumption Forecast in the Brazilian Scenario

  • Chapter
  • First Online:
Book cover Smart and Digital Cities

Part of the book series: Urban Computing ((UC))

  • 754 Accesses

Abstract

The world population has been rising on a large scale, and this directly reflects on the electricity consumption. In this scenario, techniques for accurately forecasting energy consumption are particularly important, since these data can be applied in decision-making and good planning aimed at providing constant and reliable energy. Forecasting energy consumption with the most accurate value possible is not a trivial task and depends on some factors. One of the most recent works dealing with the subject at the Brazil presented a fuzzy logic-based prediction model using consumption, Gross Domestic Product index (GDP), and population and obtained good results. This work aims to evaluate, through an experimental study, the performance of classical regression techniques—linear regression, multilayer perceptron, and support vector regression—in energy consumption forecast in the Brazilian scenario. Also, we verified whether the inclusion of additional socioeconomic data could contribute to obtaining a more efficient model. When compared to the results available in the literature, our approach demonstrated superior performance in some situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CIA: Central Intelligence Agency - The World Factbook (2016). Available: https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html. Accessed 17 Feb 2017

  2. International Energy Agency (IEA): Key World Energy Statistics. IEA, Paris. https://doi.org/10.1787/key_energ_stat-2015-en (2015)

  3. Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy Build. 40(3), 394–398 (2008)

    Article  Google Scholar 

  4. IBGE: IBGE - Instituto Brasileiro de Geografia e Estatística (2017). Available: http://www.ibge.gov.br/home/. Accessed 21 Feb 2016

  5. IPEADATA: IPEADATA: Instituto de Pesquisa Econômica Aplicada. Available http://www.ipeadata.gov.br (2016). Accessed 28 Nov 2016

  6. Campos, R.J.: Previsão de séries temporais com aplicações a séries de consumo de energia elétrica, Ph.D. dissertation, Universidade Federal de Minas Gerais (2008)

    Google Scholar 

  7. Tidre, P.V.V., Biase, N.G.G., de Sousa Silva, M.I.: Utilização dos modelos de séries temporais na previsão do consumo mensal de energia elétrica da região norte do brasil. Matemática e Estatística em Foco 1(1), 57–66 (2013)

    Google Scholar 

  8. Swan, L.G., Ugursal, V.I.: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew. Sustain. Energy Rev. 13(8), 1819–1835 (2009)

    Article  Google Scholar 

  9. Bianco, V., Manca, O., Nardini, S., Minea, A.A.: Analysis and forecasting of nonresidential electricity consumption in Romania. Appl. Energy 87(11), 3584–3590 (2010)

    Article  Google Scholar 

  10. Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F.: Forecasting electricity consumption: a comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 67, 431–438 (2015)

    Article  Google Scholar 

  11. Hamzacebi, C., Es, H.A.: Forecasting the annual electricity consumption of Turkey using an optimized grey model. Energy 70, 165–171 (2014)

    Article  Google Scholar 

  12. Todesco, J.L., Pimentel, F.J., Bettiol, A.L.: O uso de famílias de circuitos e rede neural artificial para previsão de demanda de energia elétrica. Revista Produção Online, 4(4), 1–8 (2004)

    Article  Google Scholar 

  13. Mammen, P.M., Kumar, H., Ramamritham, K., Rashid, H.: Want to reduce energy consumption, whom should we call? In: Proceedings of the Ninth International Conference on Future Energy Systems, pp. 12–20. ACM, New York (2018)

    Google Scholar 

  14. Zhou, D.P., Balandat, M., Tomlin, C.J.: Estimating treatment effects of a residential demand response program using non-experimental data. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 95–102. IEEE, Piscataway (2017)

    Google Scholar 

  15. Siddiqui, I.F., Lee, S.U.-J., Abbas, A., Bashir, A.K.: Optimizing lifespan and energy consumption by smart meters in green-cloud-based smart grids. IEEE Access 5, 20934–20945 (2017)

    Article  Google Scholar 

  16. Bedingfield, S., Alahakoon, D., Genegedera, H., Chilamkurti, N.: Multi-granular electricity consumer load profiling for smart homes using a scalable big data algorithm. Sustain. Cities Soc. 40, 611–624 (2018)

    Article  Google Scholar 

  17. Yan, X., Ozturk, Y., Hu, Z., Song, Y.: A review on price-driven residential demand response. Renew. Sustain. Energy Rev. 96, 411–419 (2018)

    Article  Google Scholar 

  18. Fumo, N., Biswas, M.R.: Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 47, 332–343 (2015)

    Article  Google Scholar 

  19. Bianco, V., Manca, O., Nardini, S.: Electricity consumption forecasting in Italy using linear regression models. Energy 34(9), 1413–1421 (2009)

    Article  Google Scholar 

  20. Günay, M.E.: Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: case of Turkey. Energy Policy 90, 92–101 (2016)

    Article  Google Scholar 

  21. Torrini, F.C., Souza, R.C., Oliveira, F.L.C., Pessanha, J.F.M.: Long term electricity consumption forecast in Brazil: a fuzzy logic approach. Socio Econ. Plan. Sci. 54, 18–27 (2016)

    Article  Google Scholar 

  22. Askarzadeh, A.: Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: a case study of Iran. Energy 72, 484–491 (2014)

    Article  Google Scholar 

  23. Coelho, V.N., Coelho, I.M., Coelho, B.N., Reis, A.J., Enayatifar, R., Souza, M.J., Guimarães, F.G.: A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment. Appl. Energy 169, 567–584 (2016). Available: http://www.sciencedirect.com/science/article/pii/S0306261916301684

    Article  Google Scholar 

  24. Coelho, I.M., Coelho, V.N., da S. Luz, E.J., Ochi, L.S., Guimarães, F.G., Rios, E.: A GPU deep learning metaheuristic based model for time series forecasting. Appl. Energy (2017). Available: http://www.sciencedirect.com/science/article/pii/S0306261917300041

  25. Torrini, F.C.: Modelos de lógica fuzzy para a previsão de longo prazo de consumo de energia, Ph.D. dissertation, PUC-Rio (2014)

    Google Scholar 

  26. Dong, B., Cao, C., Lee, S.E.: Applying support vector machines to predict building energy consumption in tropical region. Energy Build. 37(5), 545–553 (2005)

    Article  Google Scholar 

  27. Pal, S.K., Mitra, S.: Multilayer perceptron, fuzzy sets, and classification. IEEE Trans. Neural Netw. 3(5), 683–697 (1992)

    Article  Google Scholar 

  28. Haykin, S.S.: Redes Neurais–Princípios e Prática (2001)

    Google Scholar 

  29. Li, Q., Meng, Q., Cai, J., Yoshino, H., Mochida, A.: Applying support vector machine to predict hourly cooling load in the building. Appl. Energy 86(10), 2249–2256 (2009)

    Article  Google Scholar 

  30. Zhao, H., Magoulès, F.: Parallel support vector machines applied to the prediction of multiple buildings energy consumption. J. Algorithms Comput. Technol. 4(2), 231–249 (2010)

    Article  Google Scholar 

  31. Hua, Y., Oliphant, M., Hu, E.J.: Development of renewable energy in Australia and China: a comparison of policies and status. Renew. Energy 85, 1044–1051 (2016)

    Article  Google Scholar 

  32. Arora, S., Taylor, J.W.: Forecasting electricity smart meter data using conditional kernel density estimation. Omega 59, 47–59 (2016)

    Article  Google Scholar 

  33. Laurinec, P., Lucká, M.: New clustering-based forecasting method for disaggregated end-consumer electricity load using smart grid data. In: 2017 IEEE 14th International Scientific Conference on Informatics, pp. 210–215. IEEE, Piscataway (2017)

    Google Scholar 

  34. Ponocko, J., Milanovic, J.V.: Forecasting demand flexibility of aggregated residential load using smart meter data. IEEE Trans. Power Syst. 33(5), 5446–5455 (2018)

    Article  Google Scholar 

  35. SGS: Banco Central do Brasil - SGS - Sistema Gerenciador de Séries Temporais - Produto interno bruto em R$ correntes (2017). Avaliable: https://www3.bcb.gov.br/sgspub/localizarseries/localizarSeries.do?method=prepararTelaLocalizarSeries. Accessed 20 Feb 2017

  36. IBGE: IBGE - Instituto Brasileiro de Geografia e Estatística - Séries Históricas e Estatísticas (2016). Avaliable: https://seriesestatisticas.ibge.gov.br/. Accessed 21 Feb 2016

  37. EIA: U.S. Energy Information Administration. Available: https://www.eia.gov/. Accessed 30 June 2016

  38. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Cambridge (2016)

    Google Scholar 

  39. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  40. Hall, M.: Time series analysis and forecasting with weka-pentaho data mining. Pentaho.com. http://wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+ with +Weka. Accessed 28 Feb 2017

  41. Shevade, S.K., Keerthi, S.S., Bhattacharyya, C., Murthy, K.R.K.: Improvements to the SMO algorithm for SVM regression. IEEE Trans. Neural Netw. 11(5), 1188–1193 (2000)

    Article  Google Scholar 

  42. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Vasconcelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasconcelos, L., Viterbo, J., Coelho, I.M., Meirelles da Silva, J.M. (2019). An Experimental Study of Regression Techniques for the Residential Energy Consumption Forecast in the Brazilian Scenario. In: Nazário Coelho, V., Machado Coelho, I., A.Oliveira, T., Ochi, L.S. (eds) Smart and Digital Cities. Urban Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-12255-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12255-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12254-6

  • Online ISBN: 978-3-030-12255-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics