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Preface

This work began as an attempt to see whether it was possible to fit a spline
curve to another parametric function in such a way that the spline curve would
respond smoothly and continuously to changes in the shape of the parametric
function. In other words, would the resulting fitted curve be suitable for use in an
animation? Since then, the scope of the project has changed somewhat to include an
investigation of the intersections that occur between three different areas of study
that normally would not touch each other: least squares orthogonal distance fitting
(ODF), spline theory, and topology. The ODF method has become the standard
technique used to develop mathematical models of the physical shapes of objects,
due to the fact that it produces a fitted result that is invariant with respect to the
size and orientation of the object. It is typically applied in cases where there are
thousands of discrete measurements available on the physical shape of an object. In
this case, there are two implicit assumptions that are being made: namely, that we
are interested only in one solution (the one that has the minimum error) and that we
are unable to substantially change the shape of the object being fit. We will relax
these two assumptions by fitting splines to a family of parametric functions whose
shape can be continuously modified. In this way, we can investigate the response of
the spline curve to changes in the shape of the curve we are trying to fit. The quality
of this response may be particularly important in cases where one wishes to produce
a smooth animation of the motion of an object. If the response is discontinuous, the
quality of the animation will suffer as a result. During these exercises, it became
increasingly clear that there are often a number of solutions that can exist and that
the interaction between them is important. Different solutions can spontaneously
coalesce and disappear, and it is sometimes necessary to arbitrarily switch from one
to another in order to minimize the error. Therefore, it is not sufficient to focus only
on the minimum error solution since the definition of this solution will change as
the object’s shape changes.

The second area of study that will be touched on is the theory of splines. We
have used six different splines to fit the shape of a simple family of epitrochoid
curves: two types of Bézier curve, two uniform B-splines, and two Beta-splines.
In theoretical studies of these splines, the emphasis is usually on how to develop
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viii Preface

mathematical shapes in such a way that they can be usefully implemented by a
designer, such as a draftsman operating CAD software. In other words, the emphasis
is on developing user-friendly ways of manipulating these shapes in a way that is
mathematically complete and consistent. For example, in the development of the
theory of Beta-splines, new degrees of freedom have been introduced and have been
associated with such concepts as tension and bias in order to make them accessible
to the designer. We will borrow these results as is but will make a slight digression
to apply them to a least squares optimization problem. In the case of Beta-splines,
this is challenging and, to the best of our knowledge, has not been done before, due
to nonlinear couplings that exist between the different adjustable parameters in the
spline model.

The final area of interest is topology. There are often multiple solutions to the
ODF method, and these solutions can always be classified as being either local
minima or saddle points of different degree. We classify them according to their
Morse index, which counts the number of negative eigenvalues of the second-
order response matrix. Since there are many solutions, two topological questions
immediately arise: are there rules that can be applied concerning the relative
number of local minima and saddle points, and are there different mechanisms
available by which solutions can either merge and disappear or cross over each
other and interchange roles? We will propose some simple rules which can be
used to determine if a given set of solutions is internally consistent in the sense
that it has the appropriate number of each type of solution. The rule that relates
the number of occurrences of each type can be viewed as an instance of Euler’s
characteristic equation for polyhedra. We will also observe experimentally two
distinct mechanisms by which solutions can either merge or cross each other. The
merge of solutions is an instance of a fold catastrophe, while the crossover of
solutions does not appear to have any analog in catastrophe theory. A diagnostic test
will be developed to allow us to easily determine which type of event is occurring.

The organization of the work is as follows. Chapter 2 presents a general
derivation of the ODF method, customized for fitting a continuous parametric
function. This contains some results which may be new or at least expressed
in unfamiliar form. Chapter 3 summarizes some previously derived properties of
splines. We have included only those results that are absolutely essential for the
description of a uniform B-spline. The results of the ODF curve fit using two types
of Bézier curve are given in Chaps. 4 and 8; two types of uniform B-spline fits
are described in Chaps. 6 and 7; and Chaps. 9 and 10 present the Beta-spline curve
fits. The cubic Bézier curve fit in Chap. 4 presents some interesting topological
problems, so Chap. 5 represents a digression to discuss the process of how solutions
coalesce and/or cross each other. Other than that, the chapters are ordered roughly
according to the degree of computational difficulty of the fit, with the cubic Bézier
being the easiest and the Beta1-spline the most difficult.

The original purpose of the study was to see if the fitted spline shapes would
respond smoothly to changes in the shape of the curve we are fitting. This is of
some importance when discussing the animation of shapes. In general, the answer
to this question is “no,” but it is hoped that the results may be helpful in determining
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which particular type of spline would be most useful in any case. In some cases,
it may be desirable to use the spline curve that presents the least computational
challenges, such as a uniform B-spline, and in other cases, there may be symmetry
considerations that would justify the use of a more complex spline such as the Beta2-
spline. In either case, one must be aware of the topological changes that can occur
as the shape of the object changes.

It is a pleasure to acknowledge the inspiration provided by the developers of
Inkscape, which stimulated the initial work in this area.

The ODF calculations were performed using the Java code at the repository:
https://github.com/alvinpenner/Spiro2SVG/

Fonthill, ON, Canada Alvin Penner
September 2018

https://inkscape.org
https://github.com/alvinpenner/Spiro2SVG/
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