Skip to main content

Opposition-Based Multi-objective Binary Differential Evolution for Multi-label Feature Selection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11411))

Abstract

Multi-label learning problem is a data analytic task in which every sample is associated with more than single label. The complexity of such problems declares the importance of feature selection task as a preprocessing step prior for multi-label learning. Feature selection can make a better learning performance both in terms of reducing computational complexity and increasing classification accuracy. Selecting the best subset of features with two objectives, the smaller number of features and higher accuracy of classification can be treated as a binary multi-objective optimization problem. Since feature selection is inherently a binary optimization problem, applying continuous metaheuristic algorithms to solve this problem decreases the diversity of solutions in the optimal Pareto-front, because of many-to-one mapping and low exploration power, accordingly. This paper proposed a binary version of Generalized Differential Evolution (BGDE3) for multi-label feature selection based on majority voting of solutions and opposition-based learning (OBL). Experimental results show that the proposed algorithm outperforms the continuous GDE3 for multi-label feature selection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gibaja, E., Ventura, S.: Multi-label learning: a review of the state of the art and ongoing research. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 4(6), 411–444 (2014)

    Article  Google Scholar 

  2. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

    Article  Google Scholar 

  3. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5

    Chapter  Google Scholar 

  4. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  5. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  6. Zhang, Y., Gong, D.W., Sun, X.Y., Guo, Y.N.: A PSO-based multi-objective multi-label feature selection method in classification. Sci. Rep. 7(1), 376 (2017)

    Article  Google Scholar 

  7. Li, F., Miao, D., Pedrycz, W.: Granular multi-label feature selection based on mutual information. Pattern Recogn. 67, 410–423 (2017)

    Article  Google Scholar 

  8. Gu, S., Cheng, R., Jin, Y.: Feature selection for high-dimensional classification using a competitive swarm optimizer. Soft Comput. 22(3), 811–822 (2018)

    Article  Google Scholar 

  9. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016)

    Article  Google Scholar 

  10. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE trans. Cybern. 43(6), 1656–1671 (2013)

    Article  Google Scholar 

  11. Huang, B., Buckley, B., Kechadi, T.M.: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications. Expert Syst. Appl. 37(5), 3638–3646 (2010)

    Article  Google Scholar 

  12. Mierswa, I., Wurst, M.: Information preserving multi-objective feature selection for unsupervised learning. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1545–1552. ACM (2006)

    Google Scholar 

  13. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  14. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. NCS. Springer Science & Business Media, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  15. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition versus randomness in soft computing techniques. Appl. Soft Comput. 8(2), 906–918 (2008)

    Article  Google Scholar 

  16. Rahnamayan, S., Wang, G.G., Ventresca, M.: An intuitive distance-based explanation of opposition-based sampling. Appl. Soft Comput. 12(9), 2828–2839 (2012)

    Article  Google Scholar 

  17. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 443–450. IEEE (2005)

    Google Scholar 

  18. Lampinen, J., et al.: DE’s selection rule for multiobjective optimization. Technical report, Lappeenranta University of Technology, Department of Information Technology, pp. 03–04 (2001)

    Google Scholar 

  19. Kukkonen, S., Lampinen, J.: An extension of generalized differential evolution for multi-objective optimization with constraints. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 752–761. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_76

    Chapter  Google Scholar 

  20. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  21. Mahdavi, S., Rahnamayan, S., Deb, K.: Opposition based learning: a literature review. Swarm Evol. Comput. 39, 1–23 (2018)

    Article  Google Scholar 

  22. Seif, Z., Ahmadi, M.B.: Opposition versus randomness in binary spaces. Appl. Soft Comput. 27, 28–37 (2015)

    Article  Google Scholar 

  23. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_34

    Chapter  Google Scholar 

  24. Cervante, L., Xue, B., Shang, L., Zhang, M.: A multi-objective feature selection approach based on binary PSO and rough set theory. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 25–36. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37198-1_3

    Chapter  Google Scholar 

  25. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872

    Chapter  Google Scholar 

  26. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)

    Article  Google Scholar 

  27. Wang, H., Jin, Y., Yao, X.: Diversity assessment in many-objective optimization. IEEE Trans. Cybern. 47(6), 1510–1522 (2017)

    Article  Google Scholar 

  28. Parsana, S., et al.: Machining parameter optimization for EDM machining of Mg-RE-Zn-Zr alloy using multi-objective passing vehicle search algorithm. Arch. Civ. Mech. Eng. 18(3), 799–817 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Asilian Bidgoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asilian Bidgoli, A., Rahnamayan, S., Ebrahimpour-Komleh, H. (2019). Opposition-Based Multi-objective Binary Differential Evolution for Multi-label Feature Selection. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics