Skip to main content

Post-quantum EPID Signatures from Symmetric Primitives

  • Conference paper
  • First Online:
Book cover Topics in Cryptology – CT-RSA 2019 (CT-RSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11405))

Included in the following conference series:

Abstract

EPID signatures are used extensively in real-world systems for hardware enclave attestation. As such, there is a strong interest in making these schemes post-quantum secure. In this paper we initiate the study of EPID signature schemes built only from symmetric primitives, such as hash functions and PRFs. We present two constructions in the random oracle model. The first is a scheme satisfying the EPID signature syntax and security definitions needed for private hardware attestation used in Intel’s SGX. The second achieves significantly shorter signatures for many applications, including the use case of remote hardware attestation. While our EPID signatures for attestation are longer than standard post-quantum signatures, they are short enough for applications where the data being signed is large, such as analytics on large private data sets, or streaming media to a trusted display. We evaluate several instantiations of our schemes so that the costs and benefits of these constructions are clear. Along the way we also give improvements to the zero-knowledge Merkle inclusion proofs of Derler et al. (2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    LowMC optimizes multiplicative complexity over GF(2) while MiMC optimizes complexity over larger finite fields. In ZKB++ the underlying circuit is represented in GF(2), which is why we prefer LowMC.

  2. 2.

    This size represents an optimized version of the ring signatures instantiated assuming LowMC is an ideal cipher. The original Derler et al. paper claimed slightly larger signatures of size 11.88 MB (8 MB in RO Model) for this ring size.

References

  1. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient encryption and cryptographic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7

    Chapter  Google Scholar 

  2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Chapter  Google Scholar 

  3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: CCS, pp. 2087–2104 (2017)

    Google Scholar 

  4. El Bansarkhani, R., Misoczki, R.: G-merkle: a hash-based group signature scheme from standard assumptions. IACR Cryptology ePrint Archive (2018)

    Google Scholar 

  5. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_28

    Chapter  Google Scholar 

  6. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38

    Chapter  Google Scholar 

  7. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11

    Chapter  Google Scholar 

  8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptology ePrint Archive (2018)

    Google Scholar 

  9. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_15

    Chapter  Google Scholar 

  10. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3

    Chapter  Google Scholar 

  11. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  MATH  Google Scholar 

  12. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security (CCS), pp. 168–177. ACM (2004)

    Google Scholar 

  13. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography (2017)

    Google Scholar 

  14. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS, pp. 132–145 (2004)

    Google Scholar 

  15. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing. IACR Cryptology ePrint Archive, 2009:95 (2009)

    Google Scholar 

  16. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_8

    Chapter  Google Scholar 

  17. Camenisch, J., Groth, J.: Group signatures: better efficiency and new theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9_9

    Chapter  Google Scholar 

  18. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_20

    Chapter  Google Scholar 

  19. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

    Chapter  Google Scholar 

  20. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: CCS, pp. 1825–1842 (2017)

    Google Scholar 

  21. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22

    Chapter  Google Scholar 

  22. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive 2016:86 (2016)

    Google Scholar 

  23. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_7

    Chapter  Google Scholar 

  24. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for accumulators with applications to ring signatures from symmetric-key primitives. IACR Cryptology ePrint Archive (2017)

    Google Scholar 

  25. Dowling, B., Günther, F., Herath, U., Stebila, D.: Secure logging schemes and certificate transparency. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 140–158. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3_8

    Chapter  Google Scholar 

  26. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_5

    Chapter  Google Scholar 

  27. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  28. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: IRON: functional encryption using intel SGX. In: CCS, pp. 765–782 (2017)

    Google Scholar 

  29. Fuller, B., et al.: Sok: cryptographically protected database search. In: IEEE Symposium on Security and Privacy (Oakland), pp. 172–191 (2017)

    Google Scholar 

  30. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean circuits. In: USENIX Security, pp. 1069–1083 (2016)

    Google Scholar 

  31. Goldreich, O.: Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  32. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  Google Scholar 

  33. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23

    Chapter  Google Scholar 

  34. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

    Chapter  Google Scholar 

  35. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

    Article  MathSciNet  Google Scholar 

  36. Johnson, S., Scarlata, V., Rozas, C., Brickell, E., Mckeen, F.: Intel® software guard extensions: EPID provisioning and attestation services (2016)

    Google Scholar 

  37. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. IACR Cryptology ePrint Archive 2018:475 (2018)

    Google Scholar 

  38. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC 6962 (2013)

    Google Scholar 

  39. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13

    Chapter  Google Scholar 

  40. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1

    Chapter  Google Scholar 

  41. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_19

    Chapter  Google Scholar 

  42. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15

    Chapter  Google Scholar 

  43. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

    Chapter  Google Scholar 

  44. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: STOC, pp. 33–43. ACM (1989)

    Google Scholar 

  45. Nayak, K., et al.: HOP: hardware makes obfuscation practical. In: NDSS (2017)

    Google Scholar 

  46. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)

    Google Scholar 

  47. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33

    Chapter  Google Scholar 

  48. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25

    Chapter  MATH  Google Scholar 

  49. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_3

    Chapter  Google Scholar 

  50. Yu, M., Gligor, V.D., Zhou, Z.: Trusted display on untrusted commodity platforms. In: CCS, pp. 989–1003 (2015)

    Google Scholar 

  51. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.: Opaque: an oblivious and encrypted distributed analytics platform. In: NSDI, pp. 283–298 (2017)

    Google Scholar 

  52. Zhou, Z., Gligor, V.D., Newsome, J., McCune, J.M.: Building verifiable trusted path on commodity x86 computers. In: IEEE Symposium on Security and Privacy (Oakland), pp. 616–630 (2012)

    Google Scholar 

Download references

Acknowledgments

We would like to thank David Wu for several helpful conversations. This work is supported by NSF, the DARPA/ARL SAFEWARE project, the Simons foundation, and a grant from ONR. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Eskandarian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boneh, D., Eskandarian, S., Fisch, B. (2019). Post-quantum EPID Signatures from Symmetric Primitives. In: Matsui, M. (eds) Topics in Cryptology – CT-RSA 2019. CT-RSA 2019. Lecture Notes in Computer Science(), vol 11405. Springer, Cham. https://doi.org/10.1007/978-3-030-12612-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12612-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12611-7

  • Online ISBN: 978-3-030-12612-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics