Skip to main content

Public Key Encryption Resilient to Post-challenge Leakage and Tampering Attacks

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2019 (CT-RSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11405))

Included in the following conference series:

Abstract

In this paper, we introduce a new framework for constructing public-key encryption (PKE) schemes resilient to joint post-challenge/after-the-fact leakage and tampering attacks in the bounded leakage and tampering (BLT) model, introduced by Damgård et al. (Asiacrypt 2013). All the prior formulations of PKE schemes considered leakage and tampering attacks only before the challenge ciphertext is made available to the adversary. However, this restriction seems necessary, since achieving security against post-challenge leakage and tampering attacks in its full generality is impossible, as shown in previous works. In this paper, we study the post-challenge/after-the-fact security for PKE schemes against bounded leakage and tampering under a restricted yet meaningful and reasonable notion of security, namely, the split-state leakage and tampering model. We show that it is possible to construct secure PKE schemes in this model, tolerating arbitrary (but bounded) leakage and tampering queries; thus overcoming the previous impossibility results.

To this end, we formulate a new notion of security, which we call entropic post-challenge IND-CCA-BLT secure PKE. We first define a weaker notion called entropic restricted post-challenge IND-CCA-BLT secure PKE, which can be instantiated using the (standard) DDH assumption. We then show a generic compiler from our entropic restricted notion to the entropic notion of security using a simulation-extractable non-interactive zero-knowledge argument system. This requires an untamperable common reference string, as in previous works. Finally, we demonstrate the usefulness of our entropic notion of security by giving a simple and generic construction of post-challenge IND-CCA-BLT secure PKE scheme in the split-state leakage and tampering model. This also settles the open problem posed by Faonio and Venturi (Asiacrypt 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, note that, the tampering functions may be identity functions with respect to ciphertexts \(c \ne c^*\), where \(c^*\) is the challenge ciphertext. This also emulates access to the (original) decryption oracle to the adversary.

  2. 2.

    For our construction the secret key is split into only two parts/splits, which is the optimal.

  3. 3.

    When \(T_i(sk) = sk\), and the adversary gets access to the tampering oracle with respect to \(c^*\), it is emulating the scenario when it gets decryption oracle access with respect to sk on \(c^*\), which is anyway disallowed in the IND-CCA-2 security game.

  4. 4.

    Recall when we write \(\mathsf {Dec}(\widetilde{sk}_\theta ,\cdot , \cdot )\), the second coordinate is the placeholder for ciphertexts input by the adversary; whereas the third coordinate is the placeholder for labels.

  5. 5.

    In our construction, we will show that \(\mathcal {F}(t_{\mathsf {post}}) = t_{\mathsf {post}} \log p\), i.e., for each post-challenge tampering query we have to leak only one element of the base group \(\mathbb {G}\) of prime order p. This single element is sufficient to simulate polynomially many (modified) decryption queries with respect to each tampering query.

References

  1. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 459–468. ACM (2015)

    Google Scholar 

  2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_28

    Chapter  MATH  Google Scholar 

  3. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31

    Chapter  Google Scholar 

  4. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_7

    Chapter  Google Scholar 

  5. Chakraborty, S., Paul, G., Rangan, C.P.: Efficient compilers for after-the-fact leakage: from CPA to CCA-2 secure PKE to AKE. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 343–362. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0_18

    Chapter  Google Scholar 

  6. Chakraborty, S., Rangan, C.P.: Public key encryption resilient to post-challenge leakage and tampering attacks. Cryptology ePrint Archive, Report 2018/883 (2018). https://eprint.iacr.org/2018/883

  7. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

    Article  MathSciNet  Google Scholar 

  8. Damgård, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: how to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_8

    Chapter  Google Scholar 

  9. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_35

    Chapter  MATH  Google Scholar 

  10. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_14

    Chapter  Google Scholar 

  11. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–452 (2010)

    Google Scholar 

  12. Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 877–907. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_32

    Chapter  Google Scholar 

  13. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic tamper-proof (ATP) security: theoretical foundations for security against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_15

    Chapter  Google Scholar 

  14. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

    Chapter  Google Scholar 

  15. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

    Article  Google Scholar 

  16. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_8

    Chapter  Google Scholar 

  17. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  19. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_30

    Chapter  Google Scholar 

  20. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J. Comput. 41(4), 772–814 (2012)

    Article  MathSciNet  Google Scholar 

  21. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random sources. J. Comput. Syst. Sci. 33(1), 75–87 (1986)

    Article  Google Scholar 

  22. Vazirani, U.V.: Strong communication complexity or generating quasi-random sequences from two communicating semi-random sources. Combinatorica 7(4), 375–392 (1987)

    Article  MathSciNet  Google Scholar 

  23. Zhang, Z., Chow, S.S., Cao, Z.: Post-challenge leakage in public-key encryption. Theor. Comput. Sci. 572, 25–49 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We acknowledge the reviewers for their helpful comments. The authors are grateful to the project “Information Security Education and Awareness Program” of Ministry of Information Technology, Government of India for providing partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvradip Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, S., Rangan, C.P. (2019). Public Key Encryption Resilient to Post-challenge Leakage and Tampering Attacks. In: Matsui, M. (eds) Topics in Cryptology – CT-RSA 2019. CT-RSA 2019. Lecture Notes in Computer Science(), vol 11405. Springer, Cham. https://doi.org/10.1007/978-3-030-12612-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12612-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12611-7

  • Online ISBN: 978-3-030-12612-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics