Skip to main content

Multimodal Dense Stereo Matching

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11269))

Included in the following conference series:

Abstract

In this paper, we propose a new approach for dense depth estimation based on multimodal stereo images. Our approach employs a combined cost function utilizing robust metrics and a transformation to an illumination independent representation. Additionally, we present a confidence based weighting scheme which allows a pixel-wise weight adjustment within the cost function. We demonstrate the capabilities of our approach using RGB- and thermal images. The resulting depth maps are evaluated by comparing them to depth measurements of a Velodyne HDL-64E LiDAR sensor. We show that our method outperforms current state of the art dense matching methods regarding depth estimation based on multimodal input images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alldieck, T., Bahnsen, C.H., Moeslund, T.B.: Context-aware fusion of RGB and thermal imagery for traffic monitoring. Sensors 16(11) (2016). https://doi.org/10.3390/s16111947

    Article  Google Scholar 

  2. Bhanu, B., Han, J.: Kinematic-based human motion analysis in infrared sequences. In: Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision (2002)

    Google Scholar 

  3. Bulatov, D., Wernerus, P., Heipke, C.: Multi-view dense matching supported by triangular meshes. ISPRS J. Photogramm. Remote Sens. 66(6), 907–918 (2011)

    Article  Google Scholar 

  4. Conaire, C., Cooke, E., O’Connor, N., Murphy, N., Smearson, A.: Background modelling in infrared and visible spectrum video for people tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops (2005)

    Google Scholar 

  5. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19315-6_3

    Chapter  Google Scholar 

  6. Guo, L., Zhang, G., Wu, J.: Infrared image area correlation matching method based on phase congruency. In: International Conference on Artificial Intelligence and Computational Intelligence (2010)

    Google Scholar 

  7. Han, J., Bhanu, B.: Fusion of color and infrared video for moving human detection. Pattern Recognit. 40(6), 1771–1784 (2007). https://doi.org/10.1016/j.patcog.2006.11.010

    Article  MATH  Google Scholar 

  8. Heather, J.P., Smith, M.I.: Multimodal image registration with applications to image fusion. In: 7th International Conference on Information Fusion, vol. 1, p. 8 (2005). https://doi.org/10.1109/ICIF.2005.1591879

  9. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  10. Hrkać, T., Kalafatić, Z., Krapac, J.: Infrared-visual image registration based on corners and hausdorff distance. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 383–392. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73040-8_39

    Chapter  Google Scholar 

  11. Hu, X., Mordohai, P.: A quantitative evaluation of confidence measures for stereo vision. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2121–2133 (2012)

    Article  Google Scholar 

  12. Istenic, R., Heric, D., Ribaric, S., Zazula, D.: Thermal and visual image registration in hough parameter space. In: 14th International Workshop on Systems, Signals and Image Processing and 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and Services, pp. 106–109 (2007). https://doi.org/10.1109/IWSSIP.2007.4381164

  13. James, A.P., Dasarathy, B.V.: Medical image fusion: a survey of the state of the art. CoRR abs/1401.0166 (2014)

    Article  Google Scholar 

  14. Kim, S., Ham, B., Kim, B., Sohn, K.: Mahalanobis distance cross-correlation for illumination-invariant stereo matching. IEEE Trans. Circuits Syst. Video Technol. 24(11), 1844–1859 (2014)

    Article  Google Scholar 

  15. Kleinschmidt, S.P., Wagner, B.: Probabilistic fusion and analysis of multimodal image features. In: 18th International Conference on Advanced Robotics, pp. 498–504 (2017)

    Google Scholar 

  16. Kleinschmidt, S.P., Wagner, B.: Spatial fusion of different imaging technologies using a virtual multimodal camera. In: Madani, K., Peaucelle, D., Gusikhin, O. (eds.) Informatics in Control, Automation and Robotics. LNEE, vol. 430, pp. 153–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-55011-4_8

    Chapter  Google Scholar 

  17. Kleinschmidt, S.P., Wagner, B.: Visual multimodal odometry: robust visual odometry in harsh environments. In: IEEE International Symposium on Safety, Security and Rescue Robotics (2018)

    Google Scholar 

  18. Kovesi, P.: Image Features from Phase Congruency. Videre: J. Comput. Vis. Res. 1(3), 1–26 (1999)

    Google Scholar 

  19. Kovesi, P.: Phase congruency detects corners and edges. In: The Australian Pattern Recognition Society Conference: DICTA, pp. 309–318 (2003)

    Google Scholar 

  20. Krotosky, S.J., Trivedi, M.M.: Mutual information based registration of multimodal stereo videos for person tracking. Comput. Vis. Image Underst. 106(2–3), 270–287 (2007). https://doi.org/10.1016/j.cviu.2006.10.008

    Article  Google Scholar 

  21. Leinonen, I., Jones, H.G.: Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J. Exp. Bot. 55(401), 1423–1431 (2004)

    Article  Google Scholar 

  22. Lin, S.S.: Review: extending visible band computer vision techniques to infrared band images. Technical report, MS-CIS-01-04, GRASP Laboratory, Computer Vision and Information Science Department, University of Pennsylvania (2001)

    Google Scholar 

  23. Maddern, W., Stewart, A., McManus, C., Upcroft, B., Churchill, W., Newman, P.: Illumination invariant imaging: applications in robust vision-based localisation, mapping and classification for autonomous vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation - Workshop, vol. 2, p. 3 (2014)

    Google Scholar 

  24. Mehltretter, M., Heipke, C.: Illumination invariant dense image matching based on sparse features. In: 38. Wissenschaftlich-Technische Jahrestagung der DGPF und PFGK18 Tagung in München, vol. 27, pp. 584–596 (2018)

    Google Scholar 

  25. Mouats, T., Aouf, N.: Multimodal stereo correspondence based on phase congruency and edge histogram descriptor. In: Proceedings of the 16th International Conference on Information Fusion, pp. 1981–1987. IEEE (2013)

    Google Scholar 

  26. Raza, S., Sanchez, V., Prince, G., Clarkson, J., Rajpoot, N.M.: Registration of thermal and visible light images of diseased plants using silhouette extraction in the wavelet domain. Pattern Recognit. 7(48), 2119–2128 (2015)

    Article  Google Scholar 

  27. Shah, P., Merchant, S.N., Desai, U.B.: Fusion of surveillance images in infrared and visible band using curvelet, wavelet and wavelet packet transform. Int. J. Wavelets, Multiresolution Inf. Process. 8(2), 271–292 (2010)

    Article  MathSciNet  Google Scholar 

  28. Vidas, S., Moghadam, P.: HeatWave: a handheld 3D thermography system for energy auditing. Energy Build. 66, 445–460 (2013)

    Article  Google Scholar 

  29. Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 756–771. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_49

    Chapter  Google Scholar 

  30. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0028345

    Chapter  Google Scholar 

  31. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 17(1–32), 2 (2016)

    MATH  Google Scholar 

  32. Zhang, Q., Pless, R.: Extrinsic calibration of a camera and laser range finder. In: International Conference on Intelligent Robots and Systems, pp. 2301–2306 (2004)

    Google Scholar 

  33. Zhao, J., Cheung, S.S.: Human segmentation by geometrically fusing visible-light and thermal imageries. Multimedia Tools Appl. 73(1), 61–89 (2014). https://doi.org/10.1007/s11042-012-1299-2

    Article  Google Scholar 

  34. Zhu, S., Yan, L.: Local stereo matching algorithm with efficient matching cost and adaptive guided image filter. Vis. Comput. 33(9), 1087–1102 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) as a part of the Research Training Group i.c.sens [GRK2159] and the MOBILISE initiative of the Leibniz Universität Hannover and TU Braunschweig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Mehltretter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehltretter, M., Kleinschmidt, S.P., Wagner, B., Heipke, C. (2019). Multimodal Dense Stereo Matching. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics