Skip to main content

A Table Tennis Robot System Using an Industrial KUKA Robot Arm

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11269))

Abstract

In recent years robotic table tennis has become a popular research challenge for image processing and robot control. Here we present a novel table tennis robot system with high accuracy vision detection and fast robot reaction. Our system is based on an industrial KUKA Agilus R900 sixx robot with 6 DOF. Four cameras are used for ball position detection at 150 fps. We employ a multiple-camera calibration method, and use iterative triangulation to reconstruct the 3D ball position with an accuracy of 2.0 mm. In order to detect the flying ball with higher velocities in real-time, we combine color and background thresholding. For predicting the ball’s trajectory we test both a curve fitting approach and an extended Kalman filter. Our robot is able to play rallies with a human counting up to 50 consequential strokes and has a general hitting rate of 87%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acosta, L., Rodrigo, J.J., Mendez, J.A., Marichal, G.N., Sigut, M.: Ping-pong player prototype. IEEE Robot. Autom. Mag. 10(4), 44–52 (2003). https://doi.org/10.1109/MRA.2003.1256297

    Article  Google Scholar 

  2. Agarwal, S., Mierle, K., et al.: Ceres solver. http://ceres-solver.org

  3. Anderson, R.L.: A Robot Ping-Pong Player: Experiment in Real-time Intelligent Control. MIT Press, Cambridge (1988)

    Google Scholar 

  4. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 9(5), 698–700 (1987). https://doi.org/10.1109/TPAMI.1987.4767965

    Article  Google Scholar 

  5. Billingsley, J.: Robot ping pong, May 1983

    Google Scholar 

  6. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  7. Fässler, H., Beyer, H.A., Wen, J.T.: Robot ping pong player: optimized mechanics, high performance 3D vision, and intelligent sensor control. Robotersysteme 6, 161–170 (1990)

    Google Scholar 

  8. Group, K.R.: The duel: timo boll vs. kuka robot, March 2014. https://www.youtube.com/watch?v=tIIJME8-au8

  9. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN 0521540518

    Book  Google Scholar 

  10. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. 68(2), 146–157 (1997). https://doi.org/10.1006/cviu.1997.0547

    Article  Google Scholar 

  11. Hoffmann, U.: Mann gegen maschine - ulf hoffmann tischtennis roboter (uhttr-1), March 2014. https://www.youtube.com/watch?v=imVNg9j7rvU

  12. Kawakami, S., Ikumo, M., Oya, T.: Omron table tennis robot forpheus. https://www.omron.com/innovation/forpheus.html

  13. Lampert, C.H., Peters, J.: Real-time detection of colored objects in multiple camera streams with off-the-shelf hardware components. J. Real-Time Image Process. 7(1), 31–41 (2012). https://doi.org/10.1007/s11554-010-0168-3

    Article  Google Scholar 

  14. Li, H., Wu, H., Lou, L., Kühnlenz, K., Ravn, O.: Ping-pong robotics with high-speed vision system. In: 2012 12th International Conference on Control Automation Robotics Vision (ICARCV), pp. 106–111 (2012). https://doi.org/10.1109/ICARCV.2012.6485142

  15. Lourakis, M., Argyros, A.: SBA: a generic sparse bundle adjustment C/C++ package based on the Levenberg-Marquardt algorithm, January 2008

    Google Scholar 

  16. Miyazaki, F., Matsushima, M., Takeuchi, M.: Learning to dynamically manipulate: a table tennis robot controls a ball and rallies with a human being. In: Kawamura, S., Svinin, M. (eds.) Advances in Robot Control, pp. 317–341. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-37347-6_15

    Chapter  MATH  Google Scholar 

  17. Müling, K., Kober, J., Peters, J.: A biomimetic approach to robot table tennis. Adapt. Behav. 19(5), 359–376 (2011). https://doi.org/10.1177/1059712311419378

    Article  Google Scholar 

  18. Mülling, K., Kober, J., Peters, J.: Simulating human table tennis with a biomimetic robot setup. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS (LNAI), vol. 6226, pp. 273–282. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15193-4_26

    Chapter  Google Scholar 

  19. Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning to select and generalize striking movements in robot table tennis. Int. J. Robot. Res. 32(3), 263–279 (2013). https://doi.org/10.1177/0278364912472380

    Article  Google Scholar 

  20. Nakashima, A., Ito, D., Hayakawa, Y.: An online trajectory planning of struck ball with spin by table tennis robot. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 865–870, July 2014. https://doi.org/10.1109/AIM.2014.6878188

  21. Nakashima, A., Ogawa, Y., Kobayashi, Y., Hayakawa, Y.: Modeling of rebound phenomenon of a rigid ball with friction and elastic effects. In: Proceedings of the 2010 American Control Conference, pp. 1410–1415, June 2010. https://doi.org/10.1109/ACC.2010.5530520

  22. Nakashima, A., Nonomura, J., Liu, C., Hayakawa, Y.: Hitting back-spin balls by robotic table tennis system based on physical models of ball motion. IFAC Proc. Vol. 45(22), 834–841 (2012). https://doi.org/10.3182/20120905-3-HR-2030.00107. 10th IFAC Symposium on Robot Control. http://www.sciencedirect.com/science/article/pii/S1474667016337132

    Article  Google Scholar 

  23. Quigley, M., et al.: ROS: an open-source robot operating system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan, May 2009

    Google Scholar 

  24. SIASUN: Siasun table tennis robot pongbot. https://youtu.be/Ov8jwAKucmk

  25. Silva, R., Melo, F.S., Veloso, M.: Towards table tennis with a quadrotor autonomous learning robot and onboard vision. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 649–655, September 2015. https://doi.org/10.1109/IROS.2015.7353441

  26. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  27. Wang, Q., Zhang, K., Wang, D.: The trajectory prediction and analysis of spinning ball for a table tennis robot application. In: The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, pp. 496–501, June 2014. https://doi.org/10.1109/CYBER.2014.6917514

  28. Xiong, R., Sun, Y., Zhu, Q., Wu, J., Chu, J.: Impedance control and its effects on a humanoid robot playing table tennis. Int. J. Adv. Robot. Syst. 9(5), 178 (2012). https://doi.org/10.5772/51924

    Article  Google Scholar 

  29. Zhang, H., Wu, Y., Yang, F.: Ball detection based on color information and hough transform. In: 2009 International Conference on Artificial Intelligence and Computational Intelligence, vol. 2, pp. 393–397 (2009). https://doi.org/10.1109/AICI.2009.21

  30. Zhang, Y., Xiong, R., Zhao, Y., Wang, J.: Real-time spin estimation of ping-pong ball using its natural brand. IEEE Trans. Instrum. Measure. 64(8), 2280–2290 (2015). https://doi.org/10.1109/TIM.2014.2385173

    Article  Google Scholar 

  31. Zhang, Y., Zhao, Y., Xiong, R., Wang, Y., Wang, J., Chu, J.: Spin observation and trajectory prediction of a ping-pong ball. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4108–4114, May 2014. https://doi.org/10.1109/ICRA.2014.6907456

  32. Zhang, Y., Xiong, R., Zhao, Y., Chu, J.: An adaptive trajectory prediction method for ping-pong robots. In: Su, C.-Y., Rakheja, S., Liu, H. (eds.) ICIRA 2012. LNCS (LNAI), vol. 7508, pp. 448–459. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33503-7_44

    Chapter  Google Scholar 

  33. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). https://doi.org/10.1109/34.888718

    Article  Google Scholar 

  34. Zhang, Z., Xu, D., Tan, M.: Visual measurement and prediction of ball trajectory for table tennis robot. IEEE Trans. Instrum. Measure. 59(12), 3195–3205 (2010). https://doi.org/10.1109/TIM.2010.2047128

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Vector Stiftung and KUKA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonas Tebbe , Yapeng Gao , Marc Sastre-Rienietz or Andreas Zell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tebbe, J., Gao, Y., Sastre-Rienietz, M., Zell, A. (2019). A Table Tennis Robot System Using an Industrial KUKA Robot Arm. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics