Skip to main content

Invexity Preserving Transformations for Projection Free Optimization with Sparsity Inducing Non-convex Constraints

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Abstract

Forward stagewise and Frank Wolfe are popular gradient based projection free optimization algorithms which both require convex constraints. We propose a method to extend the applicability of these algorithms to problems of the form \(\min _x f(x) \quad s.t. \quad g(x) \le \kappa \) where f(x) is an invex (Invexity is a generalization of convexity and ensures that all local optima are also global optima.) objective function and g(x) is a non-convex constraint. We provide a theorem which defines a class of monotone component-wise transformation functions \(x_i = h(z_i)\). These transformations lead to a convex constraint function \(G(z) = g(h(z))\). Assuming invexity of the original function f(x) that same transformation \(x_i = h(z_i)\) will lead to a transformed objective function \(F(z) = f(h(z))\) which is also invex. For algorithms that rely on a non-zero gradient \(\nabla F\) to produce new update steps invexity ensures that these algorithms will move forward as long as a descent direction exists.

S. M. Keller and D. Murezzan—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the supplementary materials, we provide an analytical proof which shows that for least squares regression problems the first active variable will always be correctly identified by the forward-stagewise method independent of the constraint. For other functions, the correctness of the first active variable can easily be empirically verified.

  2. 2.

    This is a crucial property in the context of sparse regression, as only then the sparsity patterns in x- and z-space are identical.

References

  1. Ben-Israel, A., Mond, B.: What is invexity? J. Aust. Math. Soc. Ser. B. Appl. Math. 28, 1–9 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chechik, G., Globerson, A., Tishby, N., Weiss, Y.: Information bottleneck for Gaussian variables. J. Mach. Learn. Res. 6(1), 165–188 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Dinuzzo, F., Ong, C.S., Pillonetto, G., Gehler, P.V.: Learning output kernels with block coordinate descent. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), pp. 49–56 (2011)

    Google Scholar 

  4. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logistics (NRL) 3(1–2), 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  6. Friedman, J.H.: Fast sparse regression and classification. Int. J. Forecast. 28(3), 722–738 (2012)

    Article  Google Scholar 

  7. Gasso, G., Rakotomamonjy, A., Canu, S.: Solving non-convex lasso type problems with dc programming. In: IEEE Workshop on Machine Learning for Signal Processing, MLSP 2008, pp. 450–455. IEEE (2008)

    Google Scholar 

  8. Giorgi, G.: On first order sufficient conditions for constrained optima. In: Maruyama, T., Takahashi, W. (eds.) Nonlinear and Convex Analysis in Economic Theory, pp. 53–66. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-48719-4_5

    Chapter  Google Scholar 

  9. Giorgi, G.: On some generalizations of preinvex functions 49 (2008)

    Google Scholar 

  10. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using focuss: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  11. Hastie, T., Taylor, J., Tibshirani, R., Walther, G.: Forward stagewise regression and the monotone lasso. Electron. J. Stat. 1, 1–29 (2007). https://doi.org/10.1214/07-EJS004

    Article  MathSciNet  MATH  Google Scholar 

  12. Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: ICML, vol. 1, pp. 427–435 (2013)

    Google Scholar 

  13. Lanza, A., Morigi, S., Sgallari, F.: Convex image denoising via non-convex regularization. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 666–677. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18461-6_53

    Chapter  Google Scholar 

  14. Li, G., Yan, Z., Wang, J.: A one-layer recurrent neural network for constrained nonsmooth invex optimization. Neural Netw. 50, 79–89 (2014)

    Article  MATH  Google Scholar 

  15. Li, X., Zhao, T., Zhang, T., Liu, H.: The picasso package for nonconvex regularized M-estimation in high dimensions in R. Technical report (2015)

    Google Scholar 

  16. Mazumder, R., Friedman, J.H., Hastie, T.: SparseNet: coordinate descent with nonconvex penalties. J. Am. Stat. Assoc. 106(495), 1125–1138 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mishra, S., Giorgi, G.: Invexity and Optimization. Nonconvex Optimization and Its Applications. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78562-0

    Book  MATH  Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Rey, M., Fuchs, T., Roth, V.: Sparse meta-Gaussian information bottleneck. In: Proceedings of the 31st International Conference on Machine Learning (ICML-2014), pp. 910–918 (2014)

    Google Scholar 

  20. Rey, M., Roth, V.: Meta-Gaussian information bottleneck. In: Advances in Neural Information Processing Systems-NIPS 25 (2012)

    Google Scholar 

  21. Tibshirani, R.J.: A general framework for fast stagewise algorithms. J. Mach. Learn. Res. 16, 2543–2588 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint physics/0004057 (2000)

  23. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38, 894–942 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project is supported by the the Swiss National Science Foundation project CR32I2 159682.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Mathias Keller .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 289 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keller, S.M., Murezzan, D., Roth, V. (2019). Invexity Preserving Transformations for Projection Free Optimization with Sparsity Inducing Non-convex Constraints. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics