Skip to main content

Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11269))

Abstract

Manifold models of image features abound in computer vision. We present a novel approach that combines unsupervised computation of representative manifold-valued features, called labels, and the spatially regularized assignment of these labels to given manifold-valued data. Both processes evolve dynamically through two Riemannian gradient flows that are coupled. The representation of labels and assignment variables are kept separate, to enable the flexible application to various manifold data models. As a case study, we apply our approach to the unsupervised learning of covariance descriptors on the positive definite matrix manifold, through spatially regularized geometric assignment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–347 (2006)

    Article  MathSciNet  Google Scholar 

  2. Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imaging Vis. 58(2), 211–238 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  4. Chebbi, Z., Moakher, M.: Means of Hermitian positive-definite matrices based on the log-determinant \(\alpha \)-divergence function. Linear Algebra Appl. 436(7), 1872–1889 (2012)

    Article  MathSciNet  Google Scholar 

  5. Cherian, A., Sra, S.: Positive definite matrices: data representation and applications to computer vision. In: Minh, H.Q., Murino, V. (eds.) Algorithmic Advances in Riemannian Geometry and Applications. ACVPR, pp. 93–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45026-1_4

    Chapter  MATH  Google Scholar 

  6. Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.: Jensen-Bregman LogDet divergence with application to efficient similarity search for covariance matrices. IEEE PAMI 35(9), 2161–2174 (2013)

    Article  Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Patt. Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  8. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inform. Theory 21(1), 32–40 (1975)

    Article  MathSciNet  Google Scholar 

  9. Har-Peled, S.: Geometric Approximation Algorithms. AMS, Providence (2011)

    Book  Google Scholar 

  10. Harandi, M., Hartley, R., Lovell, B., Sanderson, C.: Sparse coding on symmetric positive definite manifolds using Bregman divergences. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1294–1306 (2016)

    Article  Google Scholar 

  11. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)

    Article  MathSciNet  Google Scholar 

  12. Hühnerbein, R., Savarino, F., Åström, F., Schnörr, C.: Image labeling based on graphical models using Wasserstein messages and geometric assignment. SIAM J. Imaging Sci. 11(2), 1317–1362 (2018)

    Article  MathSciNet  Google Scholar 

  13. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  Google Scholar 

  14. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, 3rd edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02431-3

    Book  MATH  Google Scholar 

  15. Savarino, F., Hühnerbein, R., Åström, F., Recknagel, J., Schnörr, C.: Numerical integration of Riemannian gradient flows for image labeling. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 361–372. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_29

    Chapter  Google Scholar 

  16. Sra, S.: Positive Definite Matrices and the Symmetric Stein Divergence. CoRR abs/1110.1773 (2013)

    Google Scholar 

  17. Subbarao, R., Meer, P.: Nonlinear mean shift over Riemannian manifolds. Int. J. Comput. Vis. 84(1), 1–20 (2009)

    Article  Google Scholar 

  18. Teboulle, M.: A unified continuous optimization framework for center-based clustering methods. J. Mach. Learn. Res. 8, 65–102 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Turaga, P., Srivastava, A. (eds.): Riemannian Computing in Computer Vision. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22957-7

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG), grant GRK 1653.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artjom Zern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zern, A., Zisler, M., Åström, F., Petra, S., Schnörr, C. (2019). Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics