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Abstract. The quality control of timber products is vital for the sawmill
industry pursuing more efficient production processes. This paper con-
siders the automatic detection of mechanical damages in wooden board
surfaces occurred during the sawing process. Due to the high variation
in the appearance of the mechanical damages and the presence of several
other surface defects on the boards, the detection task is challenging. In
this paper, an efficient convolutional neural network based framework
that can be trained with a limited amount of annotated training data
is proposed. The framework includes a patch extraction step to produce
multiple training samples from each damaged region in the board im-
ages, followed by the patch classification and damage localization steps.
In the experiments, multiple network architectures were compared: the
VGG-16 architecture achieved the best results with over 92% patch clas-
sification accuracy and it enabled accurate localization of the mechanical
damages.

1 Introduction

Automated quality control plays an important role in the sawmill process where
end products, i.e., boards and planks need to be efficiently sorted into different
grades. Higher board grades can be sold at a higher price, resulting in more
profit for the sawmill. At the same time, selling low quality boards as high grade
products causes reclamations from the customers. Therefore, it is vital to be able
to define the grade as accurately as possible. For automating the quality control,
computer vision techniques provide an attractive tool for grading of the boards
and planks.

Timber can be mechanically damaged in the sawing process. The most com-
mon cause for the mechanical damages is that the feed rollers excessively press
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the board with spikes while moving it through the sawing machine [11]. Such
defects appear as series of marks or traces along the board. However, several
other mechanical damages may occur during the process, resulting in large vari-
ations in the appearance of the damages. Examples of mechanical damages on
sawn timber are shown in Fig. 1. It should be emphasized that the defect type
affects the grading of the boards and the end use of the product. Therefore, it
is essential to distinguish mechanical damages from the other defects.

(a) (b)

Fig. 1. Examples of the mechanical damages: (a) Periodic mechanical damage caused
by a feed roller; (b) Another type of non-periodic mechanical damage.

Convolutional neural networks (CNNs) are the leading technique for image
classification and object detection [17]. Being a universal function approximator,
CNN can be potentially trained to extract almost any high-level features from the
input image including features of mechanical damages of sawn timber. However,
applying an existing state-of-the-art CNN-based general object detection method
such as YOLO [14] or Faster R-CNN [16] for the detection of defects, especially
mechanical damages, is challenging due to the following characteristics of the
data: 1) the board images have a very high width to height ratio, 2) annotated
data are difficult to obtain resulting in a small amount of training data, and 3)
defect (bounding box) sizes and aspect ratios vary considerably.

In this paper, the above problems are tackled by proposing an efficient CNN-
based method for detecting mechanical damages from board images by utilizing
a one-dimensional sliding window approach. The proposed method is based on
the fact that the damage localization is relevant only along the longitudinal
direction of the board since the defected parts of the board are sawn off. This
makes it possible implement the sliding window based detection method with
only one scale and with a relatively small amount of image patches per image
to be classified with CNN. Since most of the individual mechanical damages
are large, each of them is represented by numerous image patches resulting in
a large amount of positive examples for the training. We further utilize data
augmentation and transfer learning to make it possible to train CNNs with a
relatively small amount of data. Finally, we evaluate multiple CNN architectures
for the classification task, and demonstrate the efficiency of the approach.



Detection of Mechanical Damages in Sawn Timber 3

2 Related Work

Numerous computer vision based methods for surface inspection of sawn timber
including defect detection can be found in the literature. However, most of the
existing studies consider the detection of natural timber defects such as different
kinds of knots, bark pockets, wane, fungus, worm holes, cracks, and resin leaving
out mechanical damages [6].

The existing approaches vary between the different defect types, but three
common stages can be highlighted [6]: 1) The defects are localized, 2) features
are extracted from each defect, and 3) feature-based classification of the defects
is performed. Several reviews on the existing solutions for the timber surface
inspection exist [6, 23, 15]. They categorize the approaches based on the methods
used for defect localization, feature extraction, and classification, and compare
the method performances.

The feature localization stage can be implemented with the combination of
various image filtering, segmentation, thresholding, connected components la-
beling, region merging, and many other image processing techniques. Most of
the previous studies have used texture features for the timber defect classifica-
tion [23]. The most common feature extraction methods are local binary patterns
(LBP) [12], gray-level co-occurrence matrix (GLCM) [5], scale-invariant feature
transform (SIFT) [10], speeded up robust features (SURF) [1] and Tamura tex-
ture features [22].

With the increase of computing performance, deep learning approaches have
become more popular in image processing [21]. The most recent articles con-
sidering defect detection rely on CNNs. In [15], a generic deep-learning-based
approach for automated surface inspection was introduced. The method utilizes
a pretrained Decaf CNN [3] to generate a heatmap of defects on the surface. The
heatmap is further binarized and segmented using the graph-based Felzenszwalbs
segmentation method [4]. In [2], a method for crack detection on concrete sur-
face using a single CNN was introduced. The image is processed using a sliding
window, and the corresponding part of the image is fed to CNN for each position
of the window.

3 Proposed Method

The scheme of the proposed method is illustrated in Fig. 2. The method starts
with the patch extraction procedure where the board image is divided into over-
lapping image patches. The patches are classified using CNN according to the
defect type located within the patch. Finally, the mechanical damages are local-
ized based on the coordinates of the patches.

The sawn timber boards are long and narrow, and that is why their sur-
face images have the high width-to-height ratio. At the same time, the existing
trained CNN architectures require input images to be typically scaled to a fixed
size with the aspect ratio of 1. Since the mechanical damages caused by feed
rollers consist of quite narrow notches scaling a board image to the required
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Fig. 2. The scheme of the proposed method for mechanical damage detection from
sawn timber images: the board image is split into overlapping patches, the patches are
fed to CNN, and then the classified patches and their original locations determine the
beginning (green line) and the end (red line) positions of mechanical damages in the
longitudinal direction.

dimensions (approximately 8 times in the horizontal dimension) leads to losing
the significant information about defect appearance and causes difficulties in the
learning process as a consequence.

To resolve this problem, the patch extraction method is used. The general
idea is to segment the board from the image and to split the segmented region
into a series of small overlapping patches with the required size. The proposed
patch extraction technique turns the problem of the mechanical damage detec-
tion into a patch classification task.

3.1 Patch extraction

Before the image patch extraction, the board needs to be detected from the im-
age. Typical board images captured in the sawmill process consist of a bright
board with a dark background. For the board segmentation, the image is con-
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verted from RGB to grayscale, and the Otsu’s thresholding method [13] is ap-
plied. After this, the largest connected component is searched.

The coordinates of the bounding box for the board are computed using the
coordinates of the top-, bottom-, left- and right-most pixels of the connected
component. The board in the image could be located imprecisely in the horizontal
direction and its orientation could be different from the one of the image. The
non-ideal orientation and possible presence of slivers makes the direct use of
connected component extreme points unreliable for accurate extraction of the
patches. Nevertheless, the left and right sides of the bounding box can be used
as reference points.

To locate the board more accurately, the following steps are performed. First,
the board centroid is calculated as the mean value of the connected component
pixels coordinates. Then, the angle to the horizontal direction θ and the mi-
nor axis length of the ellipse with the same normalized central moment as the
connected component are computed. To find the ellipse, the origin of the pixels’
coordinates is shifted to the position of the centroid. If the height of the bounding
box is smaller than the minor ellipse axis multiplied by cos θ then the bounding
box is assumed to be correct and the upper board edge is approximated using
the coordinates of one of the top bounding box corners as a reference. The lower
board edge is a parallel line that goes under the upper edge at the approximated
board height distance. If the height of the bounding box is larger than the mi-
nor ellipse axis multiplied by cos θ then the reference is the central line passing
through the centroid with the angle to the horizontal direction θ. The upper and
lower edges are at the distance of half board height from the central line.

The patch positions are computed using the top and bottom board edges,
and the left and right bounding box sides. Moreover, the top and bottom parts
of all the patches include the background margins with the size of 10% of the
board height. This is done because the mechanical damages are often located
close to or at the edges of the board. Also, the background margin of 10 pixels is
added to the left and right ends of the board. The patches have a square shape
and adjacent patches have 50% overlap with each other. Finally, the patches
are scaled to the input size of the CNN architecture. An example of localized
patches is shown in Figure 3.

Fig. 3. Extraction the overlapping image patches from the segmented board image.
The rightmost patch is aligned with the end of the board and has, therefore, a larger
overlap with the neighboring patch.
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3.2 Patch classification and damage localization

After the patches have been extracted they are fed to the CNN network in
which binary classification between the defected and non-defected patches is
made. During the extraction step, the patch coordinates of the entire image
are preserved. The patch is considered to contain the mechanical damage if the
damage covers more than the half of the patch in the longitudinal direction of the
board. Also, the patch overlap is half of their width. To deduce the localization,
the left border of the defect is considered to be at x+0.25w of the first patch in a
sequence of defective patches while the right border is considered be at x+0.75w
of the last patch in a sequence of defective patches where x is the longitudinal
coordinate of the top left corner of the patch and w is the width of the patch.
The damage localization is visualized in Figure 4.

(a) (b)

Fig. 4. Damage localization: (a) The first defective patch in a sequence; (b) The last
defective patch in a sequence.

4 Experiments

4.1 Data

The data consists of images of 127 sawn timber boards (see Fig. 5). Six overlap-
ping images (three from the top and three from the bottom sides) were taken
from every board to cover the whole length of the board. The images were
manually annotated for the following defect types: periodic mechanical dam-
ages caused by feed rollers and non-periodic mechanical damages. The defect
examples are shown in Fig. 1.

The patch extraction algorithm was applied to the labeled data. As a result,
10808 image patches were extracted from the board images. All patches over-
lapping with a bounding box of a mechanical damage at least 50% of its width
were labeled as containing a defect. Most of the patches represent defectless
parts of the board, and therefore, there is a large class imbalance in the dataset.
For example, in the case of periodic mechanical damages, there are 8683 clear
patches and only 2125 defective. The number of defective patches was increased
by generating augmented image patches with horizontal and vertical mirroring
and 180◦ rotation. As a result, the number of defective patches was 8500. The
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Fig. 5. An example of feed roller traces as mechanical damage (green bounding box)
and wane not considered as mechanical damage (red bounding box).

patches were board-wise randomly split into the training (70%) and test sets
(30%). This means that all the patches from one board were used either in the
training phase or in the test phase. The augmented image patches were used only
in the training phase. The vast majority of mechanical damages belong to the
group of periodic mechanical damages. Therefore, for the further experiments,
two datasets were constructed. In the first dataset, all mechanical damages were
combined into one defect class and, in the second dataset, non-periodic mechan-
ical damages were eliminated causing the defect class to contain only periodic
mechanical damages. Table 1 shows the numbers of images and patches in the
datasets.

Table 1. The number of images in the datasets.

Defects
Training Test

Boards Images
Patches

Boards Images
Patches

Clear Defect Total Clear Defect Total

Combined 89 597 5490 7840 13330 38 229 2667 691 3358

Periodic 89 534 6045 6164 12209 38 228 2638 584 3222

4.2 Evaluation criteria

The accuracy (ACC) of image patch classification was measured as the percent-
age of correctly classified patches over all test images. Additionally, the damage
localization accuracy was measured using the Jaccard metric. The Jaccard met-
ric is typically defined as follows:

SJaccard =
|AP ∩AGT |
|AP ∪AGT |

(1)

where AP is the area of the predicted object bounding box and AGT is the area
of the ground truth bounding box. In our experiments, comparing detections
and ground truth this way is problematic since a portion of the test images
does not contain any mechanical damages causing the intersection |AP ∩ AGT |
to be zero even if the method works correctly, i.e. it does not detect any false
positives. This further results in the Jaccard metric values to be unreliable. To
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avoid this, the Jaccard metric was used to measure the accuracy of detecting the
non-damaged parts of the boards, i.e., how well the method predicts the regions
that do not contain mechanical damages. This means that AGT in (1) defines
the ground truth for non-damaged areas and AP defines the areas where no
mechanical damages were detected. It should be noted that the dataset does not
contain any image that is fully covered with mechanical damages, and therefore,
the intersection is zero only if the method fails, i.e. does not detect any non-
damaged regions. An example of the intersection and the union of the ground
truth, and the predicted mechanically damaged one-dimensional regions of the
board is shown in Figure 6. The average Jaccard metric over all the test images
was used as the performance measure.

Fig. 6. Jaccard metric in case of one-dimensional mechanical damage localization from
a board image. The ground truth defect borders are red and the predicted defect
borders are green.

4.3 Results

Two experiments were carried out. In the first experiment, the method was
trained to detect any mechanical damages, i.e., the both periodic and non-
periodic mechanical damages were considered to belong to the same class (com-
bined). In the second experiment, the method was trained to detect the periodic
mechanical damages only. The purpose of the first experiment was to evalu-
ate the ability of the selected CNN architecture to distinguish the mechanically
damaged parts of the board regardless of the damage type. The non-periodic me-
chanical damages may significantly affect the accuracy because they are more
variable in their appearance and less common in the existing dataset. That is
why the second experiment was carried out to evaluate the performance of the
CNN to classify periodic mechanical damages. Since the non-periodic mechani-
cal damages are considerably less common, it was not possible to train a CNN
to detect them alone.

Four CNN architectures were selected for the comparison concerning their
ability to recognize mechanical damages in sawn timber patches. These archi-
tectures were AlexNet [9], GoogLeNet [20], ResNet-50 [7] and VGG-16 [19]. The
architectures were trained with the Caffe deep learning framework [8]. To reduce
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the training time and to increase the classification accuracy, the transfer learn-
ing approach was applied. The selected CNNs were initialized with pretrained
models trained for wood species identification using a similar but more extensive
dataset [18].

The performance for localization and binary classification of the combined
periodic and non-periodic mechanical damages to a single class is provided in
Table 2. The performance for localization and binary classification of the periodic
mechanical damages is provided in Table 3. The percentages of images that
were analyzed correctly, i.e., all the mechanical damages were correctly detected
with respect to the Jaccard metric threshold, are shown in Fig. 7. Examples of
periodic damage detection results with the GoogLeNet CNN architecture are
given in Fig. 8.

Table 2. Performance comparison of different CNN architectures in case of the com-
bined binary classification. Accuracy refers to the classification accuracy for individual
patches and SJaccard measures the defect location accuracy for the full images.

Architecture Accuracy SJaccard Confusion matrix

AlexNet 0.800 0.692

Predicted 0 Predicted 1
True 0 0.86 0.14
True 1 0.42 0.58

GoogLeNet 0.860 0.700

Predicted 0 Predicted 1
True 0 0.87 0.13
True 1 0.16 0.84

ResNet-50 0.799 0.624
Predicted 0 Predicted 1

True 0 0.79 0.21
True 1 0.17 0.83

VGG-16 0.861 0.696
Predicted 0 Predicted 1

True 0 0.85 0.15
True 1 0.11 0.89

The most time consuming stage of the proposed method is the sequential
patch classification with CNN. The lower the inference time consumed by a
single patch classification is, the more effective is the given CNN architecture.
The inference times for all the CNNs were measured on a MSI GE70 laptop with
Intel Core i7-4700MQ @ 2.4 GHz processor, NVIDIA GeForce GTX 760M single
GPU, and Ubuntu 17.10 operating system. Table 4 contains the average time
required to classify one patch of a board image.

As it can be seen, the VGG-16 architecture achieves the best patch classifi-
cation accuracy of more than 92% for the periodic mechanical damages and 86%
for all the mechanical damages. At the same time, the GoogLeNet architecture
achieves the lowest false negative and false positive rates and it is four times
faster in the single patch processing than the VGG-16. The worst classification
and detection accuracy was shown by the AlexNet architecture, and it showed
the worst false positive rate of 41%.



10 N. Rudakov et al.

Table 3. Performance comparison of different CNN architectures in case of the periodic
mechanical damages binary classification.

Architecture Accuracy SJaccard Confusion matrix

AlexNet 0.857 0.779

Predicted 0 Predicted 1
True 0 0.92 0.08
True 1 0.41 0.59

GoogLeNet 0.907 0.795
Predicted 0 Predicted 1

True 0 0.91 0.09
True 1 0.09 0.91

ResNet-50 0.913 0.829

Predicted 0 Predicted 1
True 0 0.94 0.06
True 1 0.20 0.80

VGG-16 0.927 0.840

Predicted 0 Predicted 1
True 0 0.95 0.05
True 1 0.16 0.84
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Fig. 7. Percentage of images with correctly detected damages with respect to the Jac-
card metric threshold: (a) Combined mechanical damages; (b) Periodic mechanical
damages only.

5 Conclusion

In this paper, a method for mechanical damage detection on sawn timber images
was proposed. The proposed method segments the board on the image, splits
the part of the image containing the board into overlapping patches, classifies
the patches with the CNN, and, finally, determines the defect location based
on classification results and the coordinates of the patches. The experiments
compared the performance of the following four CNN architectures: AlexNet,
GoogLeNet, VGG-16, and ResNet-50. The VGG-16 architecture produced the
best results with a promising classification accuracy of more than 92% for indi-
vidual patches.
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Table 4. Single patch average inference time for each of the trained CNN architectures.

Architecture Inference time, seconds

AlexNet 0.022
GoogLeNet 0.023
ResNet-50 0.051
VGG-16 0.101

Fig. 8. Examples of the periodic mechanical damage detection with the GoogLeNet
CNN architecture: the ground truth damage areas (red bounding boxes) and the pre-
dicted defective parts (green overlay).
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