Chapter

Robust Perception for Aerial Inspection:
Adaptive and On-line Techniques

M. Villamizar, A. Sanfeliu

Abstract This chapter explains an adaptive on-line object detection and classifica-
tion technique for robust perception due to varying scene conditions, for example
partial cast shadows, change on the illumination conditions or changes in the angle
of the object target view. This approach continuously updates the target model upon
arrival of new data, being able to adapt to dynamic situations. The method uses an
on-line learning technique that works on real-time and it is continuously updated in
order to adapt to potential changes undergone by the target object. The method can
run in real-time.

1 Introduction

For aerial robots, the recognition of objects and places plays an important role for
diverse aerial tasks such as autonomous robot landing and localization. However, the
detection of visual targets is a very challenging problem because the varying scene
conditions such as light changes. This is particularly critical in outdoors where the
environmental conditions change suddenly.

Most current UAV perception algorithms use external markers placed along the
environment or on the object of interest, which can be easily detected with RGB
or infra-red cameras. Tasks such target detection [7, 9, 10], navigation [5, 18] and
landing [4, 13] can be easily simplified with the use of these markers. There are,
however, situations where the deployment of markers is not practical or possible,
especially when the vehicle operates in dynamically changing and outdoor scenar-
ios.

Following, we propose an efficient algorithm for detecting the pose of natural
landmarks on input video sequences without the need of using external markers [17].
This is especially remarkable, as there are consider scenes like the one shown in
Fig. 1, where the target is a chunk of grass in which identifying distinctive inter-
est points is not feasible, preventing thus the use of keypoint recognition methods
[8, 11]. In addition, the approach continuously updates the target model upon the



arrival of new data, being able to adapt to dynamic situations where the its appear-
ance may change. This is in contrast to the previous approaches, which learn object
appearances from large training datasets, but once these models are learned, they
are kept unchanged during the whole testing process.

At the core of the approach lies a Random Ferns classifier, that models the pos-
terior probabilities of different views of the target using multiple and independent
Ferns, each containing features at particular positions of the target. A Shannon en-
tropy measure is used to pick the most informative locations of these features. This
minimizes the number of Ferns while maximizing its discriminative power, allow-
ing thus, for robust detections at low computational costs. In addition, after off-line
initialization, the new incoming detections are used to update the posterior probabil-
ities on the fly, and adapt to changing appearances that can occur due to the presence
of shadows or occluding objects. All these virtues, make the proposed detector ap-
propriate for UAV navigation.

As shown in Fig. 1, the approach consists of two main stages. Initially, a canoni-
cal sample of the target is provided by the user as a bounding box in the first frame
of the sequence (Fig. 1(a)). Through synthetic warps based on shifts and planar ro-
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Fig. 1 Detecting natural landmarks. Top: Kind of outdoor scenario we consider. Some of the chal-
lenges the detector needs to address are light changes, shadows and repetitive textures. Bottom:
Schematic of the approach. It consists of two stages, an off-line learning stage where a general
model of the object’s appearance is learned, and an on-line stage, where the object’s model is
continuously updated using input images.
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Fig. 2 Synthetic training data. The canonical sample (left) is synthetically warped to generate new
training samples (middle). These samples are computed at different orientations and at different
shift and blurring levels (right). The red circle and arrow indicate the target pose for each sample.

tations, new samples of the target are generated, each associated to a specific view-
point (Fig. 1(b)). All these samples are used for training a classifier that models
the posterior of each view (Fig. 1(c)). The proposed classifier is a new version of
Random Ferns [12] that uses an entropy reduction criterion to compute the most dis-
criminative features. This classifier, dubbed Entropy-based Random Ferns (ERFs),
allows to both minimize the number of Ferns to represent the target (making the
algorithm more efficient), and to maximize the discriminative power. All this initial
training is performed off-line, in matter of minutes.

In the second stage (Fig. 1(d)) the ERFs classifier is evaluated at each input
frame, and its detections are used to update the posterior probabilities, which still
contain the information of the original target appearance that avoids drifting to false
detections (Fig. 1(e)). This allows a non-supervised adaption of the classifier to pro-
gressive target changes.

Next, we describe the main steps for building the classifier: generation of an
initial set of synthetic samples, off-line construction of the classifier, a new criteria
for selecting the features and finally, the on-line adaption of the algorithm.

2 Generating synthetic samples for off-line training

Initially it is assumed only one single sample of the target to be detected. This canon-
ical sample is provided by the user as a bounding box in the first frame of the video
sequence. In order to obtain a more complete description of the target, synthetically
are generated new views of the canonical shape.

As it is typically done in aerial imagery, the depth of the target is assumed negligi-
ble compared to its distance w.r.t. the camera. It is therefore considered the canonical
target as being planar, and the approximation of multiple views can done through
in-plane rotations. Note, however, that the method is equally valid for non-planar
objects. In that case, sample training images could be either generated with more
sophisticated rendering tools or by simply acquiring real images of the target from
each of the viewpoints.

For the purposes of this paper, and as shown in the example of Fig. 2, the canon-
ical shape is rotated at W = 12 principal pose orientations, that will establish the
classes of our classification problem. In addition, for each pose w € {1,2,..,W}



Table 1 Symbols used in the development of the Random Fern based classifier for adaptive per-
ception.

Definition Symbol

Classifier classes w € 1,2,..W (pose orientation) w
Estimated pose of w 0
Class label y; = {+w;, —w;} (if belongs to a classifier class or background) Vi

Sample x; € £ in image space 2 X;
Initial training dataset 2 = {(x;,y;) Y| 9
Image x() value at pixel coordinates (u,v), with color channel ¢ x(u,v,c)
Binary features 1l
Fern Fj = {f{,f;...., fi} consisting of a set of M binary features Fj

Fern output, F(x) =z=(fi1,...,fu)2+1 z
Indicator function I(e)
Classifier response for sample x H(x)
Classifier confidence conf(+)
Classifier parameters [}
Probability a sample in Fern j belongs to positive class with pose w at output z 6; .,
Shannon Entropy of Fern F; E(F))
Distribution of samples across poses w in the leaf z A,

there are further included 6 additional samples with random levels of shifting and
blurring. This helps to model small deviations from the planar assumption, as well
as the blurring produced by sudden motions of the camera. A final subset with a
similar number of background samples (random patches chosen from background)
per pose is also considered. Let us denote this whole initial training dataset as
P = {(x1,y;)}., where x; € 2 corresponds to a sample in the image space 2,
N is the number of samples, and y; = {+w;, —w;} is the class label, indicating if the
sample belongs to the pose w or background classes, respectively.

3 Building the classifier

In order to perform on-line learning and object detection, it is used Random Ferns
(RFs) [12, 15]. This classifier can be understood as an extreme and very fast imple-
mentation of a random forest [3] which combines multiple random decision trees.
Furthermore, subsequent works have shown the RFs to be robust to over-fitting and
that they can be progressively computed upon the arrival of new data [6, 16]. The
most distinctive characteristic of RFs compared to the classical random forests is
that the same test parameters are used in all nodes of the tree level [3, 12]. It is
shown this in Fig. 3-left, where there can seen two Ferns F, each one with two
decision tests or binary features f.

More formally, the on-line classifier is built as an average of J Ferns in which
each Fern F; consists of a set of M binary features, F; = {f/, f, ..., fi;}. represent-
ing binary comparisons between pairs of pixel intensities. This can be written as

F(x) =L(x(uy,vi,c1) > x(uz,v2,¢2)) (1)
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Fig. 3 Fern-based classifier. Computation of the classifier using J = 2 Ferns with M = 2 binary
features. Left: Schematic representation of the Ferns structure using binary trees. At the bottom
of the tree it is plotted the distributions which are updated for a training sample x. For instance,
assuming the training sample x belongs to the positive class and that F; (x) = (00), + 1 = 1, the bin
of the positive class in z = 1 would be increased in one unit. The same sample, would also increase
in one unit the bin corresponding to z = 3 of F3, as F>(x) = (10)2 + 1 = 3. Right: Example of how
the Ferns are tested on an image sample x. Features are signed comparisons between image pixels.
(u,v) denote the spatial coordinate, and ¢ the color channel coordinate.

where x is the image sample, x(u, v, ¢) indicates the image value at pixel coordinates
(u,v) with color channel ¢, and I(e) is the indicator function:

1 ifeistrue
I(e) = { 0 ifeis false @

As it will described in the following section, and in contrast to the original Ferns
formulation [12], the location of these pairs of pixels is computed during the train-
ing stage according to a criterion of entropy minimization. Fig. 3-right shows a
simple example of how two different Ferns with two features are evaluated in an
image sample x. The combination of these binary features determines the Fern out-
put, F(x) = z, where z = (f1,..., fu)2 + 1, is the co-occurrence of the features and
corresponds to the Fern leaf where the sample x falls (See Fig. 3-left).

So far, there have discussed how a single Fern is evaluated on an image sample.
Let us now explain how the classifier is built, from the response of J Ferns F =

{Fi,...,Fs}. The response of the classifier, for an input sample image x can be
written as ( -
+1 if conf(x € W) >
H(x)= { —1 otherwise, 3)

where W is the estimated pose of the sample, conf(x € W) is the confidence of the
classifier on predicting that x belongs to the class w, and  is a confidence threshold
whose default value is 0.5. Thus, if the output of the classifier for a sample x is
H(x) = +1, the sample is assigned to the target (positive) class w. Otherwise, it
is assigned to the background (negative) class. The confidence of the classifier is
defined according to the following posterior:

conf(x € w) = p(y = +W|F(x), 0), 4)
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where 0 are parameters of the classifier we will define below and y = {+w, —w}
denotes the class label.

The estimated pose W is computed by evaluating the confidence function over all
possible poses, and picking the one with maximum response, i.e.:

w=argmaxp(y = +w|F(x),0), w=1,.... W Q)
w

As said before, this posterior probability is computed by combining the posterior
of the J Ferns:

~I=
D1~

p(y=+w|F(x),8) =~ ) p(y=+w|Fj(x) =2,6;.), ©)

j=1

where z is the Fern output, and 6; ., is the probability that a sample in the Fern j
with output z belongs to the positive class with pose w. Since the posterior proba-
bilities follow a Bernoulli distribution

P (IFj(x) = 2,6j.2.0) ~ Ber(y6j2), ™

with we can write that

p(y=+wlFi(x) =2,0j.w) = 0w ®

The parameters of these distributions are computed during the training stage
through a Maximum Likelihood Estimate (MLE) over the labeled set of synthetic
samples Z we have previously generated. That is,

+w
Nj-,z

— &)
NJJ'CZW + Nj,zw

Gj,z,w =

where N;;W is the number of positive samples that fall into the leaf z of the Fern j.

Similarly, N j.zw corresponds to the number of negative samples for the Fern j with

output z. The reader is referred to Fig. 3-left for an illustrative example.

4 Feature selection

In all previous works that use RFs classifiers, the Ferns features, i.e, the pairs of
pixels whose intensities are compared, are chosen at random [6, 12, 16]. In this
work, it is proposed Entropy-based Random Ferns (ERFs) to select the most relevant
and discriminative binary features, resulting in a classifier with increased levels of
efficiency and robustness.

For this purpose, it is used a methodology to choose the binary features that re-
duce the classification error over the training data &. As an approach to this, it will
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be looked for the features that minimize the Shannon Entropy &, which gives a mea-
sure about the impurity of the tree (i.e, how peaked are the posterior distributions at
each Fern), and about the uncertainty associated with the data [2, 14].

Specifically, each Fern F; is independently computed from the rest of Ferns, and
using a different and small random subset . C 2 of the training data. Partitioning
the training data will avoid potential over-fitting errors during testing [2, 3]. Let us
now assume a large and random pool of binary features, and we want to pick the
best of them for a Fern F;. At each node level m, it will be chosen the binary feature
fm that minimizes the entropy of the Fern &(F;), computed as

2"1 N
éa(Fj) = Z - |§‘Z

z=1

where N ; is the number of samples falling into the leaf z and |S] is the size of the
samples subset S. The variable 7 is the distribution of samples across poses w in
the leaf z, and is represented trough a normalized histogram.

Once the feature f;, that minimizes &'(F;) is chosen, it is added to the set of fea-
tures of F;. This is repeated until a maximum number of features M (corresponding
the the depth of the Fern) is reached.

5 On-line learning

The off-line training procedure described in the previous section can be done in
about one minute (for M ~ 3 features and J ~ 20 trees). Then, at runtime, the result-
ing classifier is evaluated over the input data and it is continuously updated in order
to adapt to potential changes undergone by the target object.

As shown in the approach overview in Fig. 1, during the on-line learning process,
new detections are fed into the classifier to update the posterior probabilities. These
samples are labeled as either positive, corresponding to the target, or negative, when
they correspond to the background.

The labeling is done based on the confidence value about the input sample x com-
puted using Eq. 4. If a sample x with pose w has a confidence value conf(x) > 3,
it is assigned to the positive class +w. Otherwise, the sample is considered nega-
tive —w. The parameter f3 is the threshold of the classifier and to reduce the risk
of misclassification it is set to the Bayes error rate. Yet, since an incorrect labeling
might lead to drifting problems and loss of the target, it can be used of a more rigor-
ous rejection criterion [1], by means of a confidence interval y around f to indicate
predictions with ambiguous confidence values. Samples within this interval are not
further considered in the updating process.

The labeled samples that pass the confidence test are then used to recompute
the prior probabilities 6 ., of Eq. 9, and update the classifier. For instance, let us
assume that a sample x is labeled as +w;, and that it activates the output z of the
fern Fj, i.e, Fj(x) = z. It will be then updated the classifier by adding one unit to
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Fig. 4 Detection of ground patches. Left: Detection rates according to the number of Ferns used to
compute the classifier. Center-left: Speed of the classifier (frames per second) for different amounts
of features and Ferns. Center-right: ERFs and RFs comparison using different number of Ferns.
Right: Degree of overlapping between the target and background classes.

the i-th bin of the histogram of N; +” . This is repeated for all ferns. With these new
distributions, there are recomputed the priors 6; ., and thus, updated the classifier.

6 Experiments

Four different experiments were done to show the robustness of the method applied
to different type of images. The first one is the detection of ground patches that
can occur when the UAV tries to find the landing area. The second one is for the
detection of a specific object, a bench in a park, when the UAV is flying. The third
one is the detection of a specific pipe feature when the UAV is following the pipe,
and can be used for example, for the detection of the initial reference point in a pipe
to be inspected. Finally the fourth one is the line tracking in a pipe and the detection
when the line is lost.

6.1 Detection of ground patches

Let us use ERFs to detect specific patches on the ground, in a field containing a
mixture of grass and soil. While this is a very useful task for detecting landing areas
for UAVs, it is extremely challenging, due to the presence of many similar patterns,
and the lack of salient and recognizable visual marks. Fig. 6-(top, middle) shows a
few sample images.

Following, let us compare the detection performance of ERFs and RFs. To this
end, let us evaluate the classifiers in a video sequence containing 150 images of
a ground field, that suffers from several artifacts, such as sudden camera motions,
and light and scale changes (see Fig. 6-top). In this experiment, it is considered 9
features per Fern. The detection performance rate of both methods are presented
in Fig. 4-left, where we detail the PR-EER (Equal Error Rate over the Precision-
Recall curve) values for classifiers trained with different numbers Ferns. Note that
the ERFs classifier yields better results and is less sensitive to the number of Ferns,
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Fig. 5 Detection of 3D objects. ERFs are assessed to learn and detect 3D objects. Left: Detection
rates. Right: Output of the classifier conf(x).

thus allowing for more efficient evaluations. This is verified in Fig. 4-center-left
where there are provide the computation time of the classifiers in frames per second.
Some sample images with the outputs of the ERFs (red circles) and the RFs (green
ones) are depicted in Fig. 6-top. Observe that the ERFs are able to accurately detect
the visual target, even when it is difficult for the human eye.

Fig. 6-middle shows another experiment of recognizing ground landmarks. This
experiment contains 64 images where the target appears at multiple locations and
under various rotations. In this experiment, the classifiers are trained with W = 16
in-plane possible orientations. The detection rates of both the ERFs and the RFs are
shown in Fig. 4-Center-right. Again, the ERFs provide better results. In addition, if
it is analyzed the degree of overlapping between the target and background classes
through the Bhattacharyya coefficient (Fig. 4-right), we see that ERFs provide much
higher separation of classes, and therefore, much higher confidence values in its
detection. Observe in Fig. 6-middle a few sample results where both the position
and orientation of the target are correctly estimated. Indeed, the proposed method
yields a detection rate over 95% (PR-EER) and an orientation accuracy of 93%.

6.2 3D object detection

There have been also tested our approach in objects that do not satisfy the assump-
tion of having a depth which is negligible compared to its distance to the camera.
Fig. 6-bottom shows a few samples of a 120 frames sequence of a bench seen from
different viewpoints and scales.

In this case there have been included in the analysis a template matching ap-
proach based on Normalized Cross Correlation (NCC), widely used for detecting
specific objects. The recognition results of all methods are summarized in Fig. 5-left.
Observe that the performance of NCC is quite poor. This is because a plain NCC
template matching can not adapt the appearance changes produced different view-
points. The same limitation would suffer our approach without the on-line adaption,



Fig. 6 Visual target detection. Output of the proposed approach (red circles) for detecting ground
targets (top, middle) and 3D objects (bottom). Black circles denote the location of the targets,
whereas the rectangle shows the detection rates: true positives (TP), false positives (FP) and false
negatives (FN).

shown in the figure as ERFs (Off). This behavior is also reflected in Fig. 5-right that
plots the confidence conf(x) of each classifier along the sequence. ERFs (Off.) and
NCC give very high scores for the first frames, but these values rapidly fall when
the viewpoint changes. On the other hand, the on-line approaches continue updating
the classifiers with new incoming samples and maintain high recognition scores.

The circles in Fig. 6-bottom, represent the detection results of the ERFs (red),
NCC (cyan) and ground truth (black), for a few sample frames. Note that the ERFs
are able to effectively handle viewpoint change. Our ERFs classifier is able to learn
these visual landmarks on the fly and to detect them despite illumination variations,
self-occlusions, viewpoints changes and repetitive textures.

6.3 Pipe feature detection

We have also applied our technique in the detection of a pipe feature, for example a
pipe welding. In this case, first the approach learn the pattern to be detected in the
following image frames of the video sequence. This pattern can be given in advance
or it is automatically detected and captured by the vision system. In our case, the
pattern is giving by the operator. Fig. 7-top left shows the first image frame where
the pipe feature is captured (inside of a red rectangle). The next frames in Fig. 7-top
and Fig. 7-bottom show several situations where the pipe feature does not appear
or other pipe features are present, but are different from the learned pattern. As it
can be seen, the system only detects the pipe welding when it appears in the image
frame and in the rest of the image frames the system does not detect anything. The
system was tested in a large sequence of pipe images.



Fig. 8 Detection of a line in a pipe

6.4 Line tracking in a pipe

Finally, we have also tested our approach in following a white line in a pipe, where
the color and pipe features are changing at every frame of the video. Fig. 8-top and
Fig. 8-bottom show some of the frames of the video.

The detection process works very well although the line have slight changes, but
it stop when the line is lost.

7 Conclusions

This chapter explains an adaptive and on-line technique for robust perception due
to varying scene conditions, for example partial cast shadows, change on the illu-
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mination conditions or changes in the angle of the object target view. This approach
continuously updates the target model upon arrival of new data, being able to adapt
to dynamic situations. The core of the technique lies in a Random Fern classifier
that models the posterior probability of different views of the target using multiple
and independent Ferns, each containing features at particular positions of the target
object. The technique uses a Shannon entropy measure to pick up the most informa-
tive locations of these features, minimizing the number of Ferns while maximizing
its discriminative power. During the on-line learning the method works on real-time
and it is continuously updated in order to adapt to potential changes undergone by
the target object. The method is demonstrated in four different experiments, the first
one detecting specific patches on the ground; the second one, detecting specific ob-
jects in the aerial scene, for example a bench in a park; and the third and four ones
detecting features and lines in a pipe.
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