Skip to main content

A 2D Transform Based Distance Function for Time Series Classification

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2018)

Abstract

Along with the arrival of Industry 4.0 era, time series classification (TSC) has attracted a lot of attention in the last decade. The high dimensionality, high feature correlation and typically high levels of noise that found in time series bring great challenges to TSC. Among TSC algorithms, the 1NN classifier has been shown as effective and difficult to beat. The core of the 1NN classifier is the distance function. The large majority of TSC have concentrated on alternative distance functions. In this paper, a two-dimensional (2D) transform based distance (2DTbD) function is proposed. There are three steps in 2DTbD. Firstly, we convert time series to 2D space by turning time series around the coordinate origin. Then we calculate distances of each dimension. Finally, we ensemble distances in 2D space to get the final time series distance. Our distance function raises the accuracy rate through the fusion of 2D information. Experimental results demonstrate that the classification accuracy can be improved by 2DTbD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Web page for our code: https://github.com/sdujicun/XY.

References

  1. Bagnall, A., Bostrom, A., Large, J., Lines, J.: The great time series classification bake off: an experimental evaluation of recently proposed algorithms. Extended version. arXiv preprint arXiv:1602.01711 (2016)

  2. Bagnall, A., Bostrom, A., Lines, J.: The UEA TSC codebase (2016). https://bitbucket.org/aaron_bostrom/time-series-classification

  3. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2017)

    Article  MathSciNet  Google Scholar 

  4. Batista, G.E., Keogh, E.J., Tataw, O.M., De Souza, V.M.: CID: an efficient complexity-invariant distance for time series. Data Min. Knowl. Disc. 28(3), 634–669 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Batista, G.E., Wang, X., Keogh, E.J.: A complexity-invariant distance measure for time series. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 699–710. SIAM (2011)

    Google Scholar 

  6. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, Seattle, WA, vol. 10, pp. 359–370 (1994)

    Google Scholar 

  7. Chen, L., Ng, R.: On the marriage of Lp-norms and edit distance. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, vol. 30, pp. 792–803. VLDB Endowment (2004)

    Google Scholar 

  8. Chen, Y., Hu, B., Keogh, E., Batista, G.E.: DTW-D: time series semi-supervised learning from a single example. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 383–391. ACM (2013)

    Google Scholar 

  9. Chen, Y., et al.: The UCR time series classification archive (2015). http://www.cs.ucr.edu/~eamonn/time_series_data

  10. Chhieng, V.M., Wong, R.K.: Adaptive distance measurement for time series databases. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 598–610. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71703-4_51

    Chapter  Google Scholar 

  11. Das, G., Gunopulos, D., Mannila, H.: Finding similar time series. In: Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 88–100. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9_109

    Chapter  Google Scholar 

  12. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endowment 1(2), 1542–1552 (2008)

    Article  Google Scholar 

  13. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. 45(1), 12 (2012)

    Article  MATH  Google Scholar 

  14. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases, vol. 23. ACM (1994)

    Google Scholar 

  15. Fu, T.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)

    Article  Google Scholar 

  16. Górecki, T., Łuczak, M.: Using derivatives in time series classification. Data Min. Knowl. Disc. 26(2), 310–331 (2013)

    Article  MathSciNet  Google Scholar 

  17. Górecki, T., Łuczak, M.: Non-isometric transforms in time series classification using DTW. Knowl.-Based Syst. 61, 98–108 (2014)

    Article  MATH  Google Scholar 

  18. Itakura, F.: Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. 23(1), 67–72 (1975)

    Article  Google Scholar 

  19. Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recognit. 44(9), 2231–2240 (2011)

    Article  Google Scholar 

  20. Ji, C., et al.: A self-evolving method of data model for cloud-based machine data ingestion. In: 2016 IEEE 9th International Conference on Cloud Computing, pp. 814–819. IEEE (2016)

    Google Scholar 

  21. Ji, C., Liu, S., Yang, C., Pan, L., Wu, L., Meng, X.: A shapelet selection algorithm for time series classification: new directions. Procedia Comput. Sci. 129, 461–467 (2018)

    Article  Google Scholar 

  22. Ji, C., Zhao, C., Pan, L., Liu, S., Yang, C., Wu, L.: A fast shapelet discovery algorithm based on important data points. Int. J. Web Serv. Res. 14(2), 67–80 (2017)

    Article  Google Scholar 

  23. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min. Knowl. Disc. 7(4), 349–371 (2003)

    Article  MathSciNet  Google Scholar 

  24. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)

    Article  Google Scholar 

  25. Keogh, E., Wei, L., Xi, X., Lee, S.H., Vlachos, M.: LB\(\_\)Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 882–893. VLDB Endowment (2006)

    Google Scholar 

  26. Kim, S.W., Park, S., Chu, W.W.: An index-based approach for similarity search supporting time warping in large sequence databases. In: Proceedings of 17th International Conference on Data Engineering, pp. 607–614. IEEE (2001)

    Google Scholar 

  27. Li, D., Bissyandé, T.F., Klein, J., Le Traon, Y.: DSCo-NG: a practical language modeling approach for time series classification. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds.) IDA 2016. LNCS, vol. 9897, pp. 1–13. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46349-0_1

    Chapter  Google Scholar 

  28. Marteau, P.F.: Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 306–318 (2009)

    Article  Google Scholar 

  29. Prieto, O.J., Alonso-González, C.J., Rodríguez, J.J.: Stacking for multivariate time series classification. Pattern Anal. Appl. 18(2), 297–312 (2015)

    Article  MathSciNet  Google Scholar 

  30. Raza, A., Kramer, S.: Ensembles of randomized time series shapelets provide improved accuracy while reducing computational costs. arXiv preprint arXiv:1702.06712 (2017)

  31. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  32. Sakurai, Y., Yoshikawa, M., Faloutsos, C.: FTW: fast similarity search under the time warping distance. In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 326–337. ACM (2005)

    Google Scholar 

  33. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    Article  Google Scholar 

  34. Sampaio, A., Lima Jr., R.C., Mendonça, N.C., Filho, R.H.: Implementation and empirical assessment of a web application cloud deployment tool. Int. J. Cloud Comput. 1, 40–52 (2013). http://hipore.com/stcc/2013/IJCC-Vol1-No1-2013.pdf#page=46

    Google Scholar 

  35. Stefan, A., Athitsos, V., Das, G.: The move-split-merge metric for time series. IEEE Trans. Knowl. Data Eng. 25(6), 1425–1438 (2013)

    Article  Google Scholar 

  36. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Disc. 26(2), 1–35 (2013)

    Article  MathSciNet  Google Scholar 

  37. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. VLDB (2000)

    Google Scholar 

  38. Yi, B.K., Jagadish, H., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: Proceedings of 14th International Conference on Data Engineering, pp. 201–208. IEEE (1998)

    Google Scholar 

  39. Zhang, Z., Cheng, J., Li, J., Bian, W., Tao, D.: Segment-based features for time series classification. Comput. J. 55(9), 1088–1102 (2012)

    Article  Google Scholar 

  40. Zhang, Z., Wen, Y., Zhang, Y., Yuan, X.: Time series classification by modeling the principal shapes. In: Bouguettaya, A., et al. (eds.) WISE 2017. LNCS, vol. 10569, pp. 406–421. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68783-4_28

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61872222, 91546203), the National Key Research and Development Program of China (2017YFA0700601), the Major Program of Shandong Province Natural Science Foundation (ZR2018ZB0419), the Key Research and Development Program of Shandong Province (2017CXGC0605, 2017CXGC0604, 2018GGX101019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cun Ji , Yupeng Hu or Shijun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, C., Zou, X., Hu, Y., Liu, S. (2019). A 2D Transform Based Distance Function for Time Series Classification. In: Gao, H., Wang, X., Yin, Y., Iqbal, M. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-030-12981-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12981-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12980-4

  • Online ISBN: 978-3-030-12981-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics