Skip to main content

ICT Innovations and Smart Farming

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 953))

Abstract

Agriculture plays a vital role in the global economy with the majority of the rural population in developing countries depending on it. The depletion of natural resources makes the improvement of the agricultural production more important but also more difficult than ever. This is the reason that although the demand is constantly growing, Information and Communication Technology (ICT) offers to producers the adoption of sustainability and improvement of their daily living conditions. ICT offers timely and updated relevant information such as weather forecast, market prices, the occurrence of new diseases and varieties, etc. The new knowledge offers a unique opportunity to bring the production enhancing technologies to the farmers and empower themselves with modern agricultural technology and act accordingly for increasing the agricultural production in a cost effective and profitable manner. The use of ICT itself or combined with other ICT systems results in productivity improvement and better resource use and reduces the time needed for farm management, marketing, logistics and quality assurance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Samah, B.A., Shaffril, H.A.M., Hassan, M.S., Hassan, M.A., Ismail, N.: Contribution of information and communication technology in increasing agro-based entrepreneurs productivity in Malaysia. J. Agric. Soc. Sci. 5, 93–98 (2009)

    Google Scholar 

  2. Kaaya, J.: Role of information technology in agriculture. In: Proceedings of the Fourth Annual Research Conference of the Faculty of Agriculture, Sokoine University of Agriculture, pp. 315–328 (1999)

    Google Scholar 

  3. Milovanović, S. (Faculty of Economics, N. (Serbia)): The role and potential of information technology in agricultural improvement. Eкoнoмикa пoљoпpивpeдe/Econ. Agric. 61, 471–485 (2014)

    Article  Google Scholar 

  4. Sørensen, C.G., Bochtis, D.D.: Conceptual model of fleet management in agriculture. Biosyst. Eng. 105, 41–50 (2010). https://doi.org/10.1016/j.biosystemseng.2009.09.009

    Article  Google Scholar 

  5. Sørensen, C.G., Pesonen, L., Bochtis, D.D., Vougioukas, S.G., Suomi, P.: Functional requirements for a future farm management information system. Comput. Electron. Agric. 729(2), 266–276 (2011). https://doi.org/10.1016/j.compag.2011.02.005

    Article  Google Scholar 

  6. Van Zyl, O., Alexander, T., De Graaf, L., Mukherjee, K., Kumar, V.: ICTs for agriculture in Africa (2014)

    Google Scholar 

  7. Sørensen, C.G., et al.: Conceptual model of a future farm management information system. Comput. Electron. Agric. 72, 37–47 (2010). https://doi.org/10.1016/j.compag.2010.02.003

    Article  Google Scholar 

  8. Sorensen, C.G., et al.: A user-centric approach for information modelling in arable farming. Comput. Electron. Agric. 73, 44–55 (2010)

    Article  Google Scholar 

  9. Bochtis, D.D., Sørensen, C.G.C., Busato, P.: Advances in agricultural machinery management: a review. Biosyst. Eng. 126, 69–81 (2014). https://doi.org/10.1016/j.biosystemseng.2014.07.012

    Article  Google Scholar 

  10. Sørensen, C.G.C.: Decision support systems as a part of agricultural operational management. In: CIOSTA - CIGR V XXVIII International Congress, Horsens, Denmark (1999)

    Google Scholar 

  11. Busato, P., Berruto, R., Cornelissen, R.: Bioenergy farm Project: economic and energy analysis of biomass by web application. In: 19th European Biomass Conference (2011)

    Google Scholar 

  12. Ballantyne, P., Maru, A., Porcari, E.M.: Information and communication technologies—opportunities to mobilize agricultural science for development. Crop Sci. 50, S-63 (2010). https://doi.org/10.2135/cropsci2009.09.0527

    Article  Google Scholar 

  13. Bisgaard, M., Vinther, D., Ostergaard, K.Z.: Modelling and Fault-Tolerant Control of an Autonomous Wheeled Robot. Group (2004)

    Google Scholar 

  14. Bochtis, D., Griepentrog, H.W., Vougioukas, S., Busato, P., Berruto, R., Zhou, K.: Route planning for orchard operations. Comput. Electron. Agric. 113, 51–60 (2015). https://doi.org/10.1016/j.compag.2014.12.024

    Article  Google Scholar 

  15. Bochtis, D.D., Vougioukas, S.G., Griepentrog, H.W.: A mission planner for an autonomous tractor. Trans. ASABE 52(5), 1429–1440 (2009). https://doi.org/10.13031/2013.29123

    Article  Google Scholar 

  16. Van Henten, E.J., Schenk, E.J., van Willigenburg, L.G., Meuleman, J., Barreiro, P.: Collision-free inverse kinematics of the redundant seven-link manipulator used in a cucumber picking robot. Biosyst. Eng. 106, 112–124 (2010). https://doi.org/10.1016/j.biosystemseng.2010.01.007

    Article  Google Scholar 

  17. Zhao, Y., Gong, L., Huang, Y., Liu, C.: Robust tomato recognition for robotic harvesting using feature images fusion. Sensors (Switzerland). 16 (2016). https://doi.org/10.3390/s16020173

    Article  Google Scholar 

  18. Schor, N., Bechar, A., Ignat, T., Dombrovsky, A., Elad, Y., Berman, S.: Robotic disease detection in greenhouses: combined detection of powdery mildew and tomato spotted wilt virus. IEEE Robot. Autom. Lett. 1, 354–360 (2016). https://doi.org/10.1109/LRA.2016.2518214

    Article  Google Scholar 

  19. Vitzrabin, E., Edan, Y.: Changing task objectives for improved sweet pepper detection for robotic harvesting. IEEE Robot. Autom. Lett. 1, 578–584 (2016). https://doi.org/10.1109/LRA.2016.2519946

    Article  Google Scholar 

  20. Hayashi, S., et al.: Evaluation of a strawberry-harvesting robot in a field test. Biosyst. Eng. 105, 160–171 (2010). https://doi.org/10.1016/j.biosystemseng.2009.09.011

    Article  Google Scholar 

  21. Xu, Y., Imou, K., Kaizu, Y., Saga, K.: Two-stage approach for detecting slightly overlapping strawberries using HOG descriptor. Biosyst. Eng. 115, 144–153 (2013). https://doi.org/10.1016/j.biosystemseng.2013.03.011

    Article  Google Scholar 

  22. Blanes, C., Ortiz, C., Mellado, M., Beltrán, P.: Assessment of eggplant firmness with accelerometers on a pneumatic robot gripper. Comput. Electron. Agric. 113, 44–50 (2015). https://doi.org/10.1016/j.compag.2015.01.013

    Article  Google Scholar 

  23. Mann, M., Zion, B., Shmulevich, I., Rubinstein, D.: Determination of robotic melon harvesting efficiency: a probabilistic approach. Int. J. Prod. Res. 54, 3216–3228 (2016). https://doi.org/10.1080/00207543.2015.1081428

    Article  Google Scholar 

  24. Irie, N., Taguchi, N., Horie, T., Ishimatsu, T.: Asparagus harvesting robot coordinated with 3-D vision sensor. In: Proceedings of the IEEE International Conference on Industrial Technology (2009)

    Google Scholar 

  25. Choi, K.H., Han, S.K., Han, S.H., Park, K.H., Kim, K.S., Kim, S.: Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields. Comput. Electron. Agric. 113, 266–274 (2015). https://doi.org/10.1016/j.compag.2015.02.014

    Article  Google Scholar 

  26. Reed, J.N., Miles, J.S., Butler, J., Baldwin, M., Noble, R.: Automation and emerging technologies for automatic mushroom harvester development. J. Agric. Eng. Res. 78, 15–23 (2001)

    Article  Google Scholar 

  27. Tanigaki, K., Fujiura, T., Akase, A., Imagawa, J.: Cherryharvesting robot. Comput. Electron. Agric. 63, 65–72 (2008)

    Article  Google Scholar 

  28. Nguyen, T.T., Kayacan, E., De Baedemaeker, J., Saeys, W.: Task and motion planning for apple harvesting robot. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 247–252 (2013)

    Article  Google Scholar 

  29. Hannan, M.W., Burks, T.F., Bulanon, D.M.: A real-time machine vision algorithm for robotic citrus harvesting. Written for Presentation at the 2007 ASABE Annual International Meeting Sponsored by ASABE (2007). Am. Soc. Agric. Biol. Eng. Ann. Int. Meet. 0300, 1–12 (2007). https://doi.org/10.13031/2013.23429

  30. Yoon, B., Kim, S.: Design of paddy weeding robot. In: 2013 44th International Symposium on Robotics, ISR 2013 (2013)

    Google Scholar 

  31. Bochtis, D.D., Sørensen, C.G., Jørgensen, R.N., Nørremark, M., Hameed, I.A., Swain, K.C.: Robotic weed monitoring. Acta Agric. Scand. Sect. B Soil Plant Sci. 61(3), 202–208 (2011). https://doi.org/10.1080/09064711003796428

    Article  Google Scholar 

  32. Haibo, L., Shuliang, D., Zunmin, L., Chuijie, Y.: Study and experiment on a wheat precision seeding robot. J. Robot. 2015 (2015). https://doi.org/10.1155/2015/696301

    Article  Google Scholar 

  33. Pierce, F.J., Nowak, P.: Aspects of precision agriculture. Adv. Agron. 67, 1–85 (1999). https://doi.org/10.1016/S0065-2113(08)60513-1

    Article  Google Scholar 

  34. Fountas, S., Aggelopoulou, K., Gemtos, T.A.: Precision agriculture: crop management for improved productivity and reduced environmental impact or improved sustainability. In: Supply Chain Management for Sustainable Food Networks, pp. 41–65. Wiley, Chichester (2015)

    Chapter  Google Scholar 

  35. Pierpaoli, E., Carli, G., Pignatti, E., Canavari, M.: Drivers of precision agriculture technologies adoption: a literature review. Proc. Technol. 8, 61–69 (2013). https://doi.org/10.1016/J.PROTCY.2013.11.010

    Article  Google Scholar 

  36. Bochtis, D.D., Sørensen, C.G., Busato, P., Berruto, R.: Benefits from optimal route planning based on B-patterns. Biosyst. Eng. 15, 389–395 (2013). https://doi.org/10.1016/j.biosystemseng.2013.04.006

    Article  Google Scholar 

  37. Bechar, A., Vigneault, C.: Agricultural robots for field operations. Part 2: operations and systems. Biosyst. Eng. 153, 110–128 (2017). https://doi.org/10.1016/j.biosystemseng.2016.11.004

    Article  Google Scholar 

  38. Kutter, T., Tiemann, S., Siebert, R., Fountas, S.: The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 12, 2–17 (2011). https://doi.org/10.1007/s11119-009-9150-0

    Article  Google Scholar 

  39. Knapper, A., Nes, N.V., Christoph, M., Hagenzieker, M., Brookhuis, K.: The use of navigation systems in naturalistic driving. Traffic Inj. Prev. 17, 264–270 (2016). https://doi.org/10.1080/15389588.2015.1077384

    Article  Google Scholar 

  40. Bryden, K.J., Charlton, J.L., Oxley, J.A., Lowndes, G.J.: Acceptance of navigation systems by older drivers. Gerontechnology 13, 21–28 (2014). https://doi.org/10.4017/gt.2014.13.1.011.00

    Article  Google Scholar 

  41. Joubert, J.W., Meintjes, S.: Repeatability & reproducibility: implications of using GPS data for freight activity chains. Transp. Res. Part B Methodol. 76, 81–92 (2015). https://doi.org/10.1016/J.TRB.2015.03.007

    Article  Google Scholar 

  42. Hameed, I.A., Bochtis, D., Sørensen, C.A.: An optimized field coverage planning approach for navigation of agricultural robots in fields involving obstacle areas. Int. J. Adv. Robot. Syst. 10, 231 (2013). https://doi.org/10.5772/56248

    Article  Google Scholar 

  43. Jensen, M.A.F., Bochtis, D., Sorensen, C.G., Blas, M.R., Lykkegaard, K.L.: In-field and inter-field path planning for agricultural transport units. Comput. Ind. Eng. 63(4), 1054–1061 (2012). https://doi.org/10.1016/j.cie.2012.07.004

    Article  Google Scholar 

  44. Zhou, K., Leck Jensen, A., Sørensen, C.G., Busato, P., Bothtis, D.D.: Agricultural operations planning in fields with multiple obstacle areas. Comput. Electron. Agric. 109, 12–22 (2014). https://doi.org/10.1016/j.compag.2014.08.013

    Article  Google Scholar 

  45. Jensen, M.F., Sørensen, C.G., Bochtis, D.: Coverage planning for capacitated field operations, Part II: optimisation. Biosyst. Eng. 139, 149–164 (2015). https://doi.org/10.1016/j.biosystemseng.2015.07.002

    Article  Google Scholar 

  46. McCown, R.L.: Changing systems for supporting farmers’ decisions: problems, paradigms, and prospects. Agric. Syst. 74, 179–220 (2002). https://doi.org/10.1016/S0308-521X(02)00026-4

    Article  Google Scholar 

  47. Lewis, T.: Evolution of farm management information systems. Comput. Electron. Agric. 19, 233–248 (1998). https://doi.org/10.1016/S0168-1699(97)00040-9

    Article  Google Scholar 

  48. Folinas, D.: A conceptual framework for business intelligence based on activities monitoring systems. Int. J. Intell. Enterp. 1, 65 (2007). https://doi.org/10.1504/IJIE.2007.013811

    Article  Google Scholar 

  49. O’Brien, J.: Management Information Systems – Managing Information Technology in the Internetworked Enterprise. Irwin McGraw-Hill, Boston (1999)

    Google Scholar 

  50. Sørensen, C., et al.: System Analysis and Definition of System Boundaries. FutureFarm (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Aage Grøn Sørensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sørensen, C.A.G., Kateris, D., Bochtis, D. (2019). ICT Innovations and Smart Farming. In: Salampasis, M., Bournaris, T. (eds) Information and Communication Technologies in Modern Agricultural Development. HAICTA 2017. Communications in Computer and Information Science, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-030-12998-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12998-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12997-2

  • Online ISBN: 978-3-030-12998-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics