Skip to main content

Digraphs Structures with Weights Corresponding to One-Dimensional Fractional Systems

  • Conference paper
  • First Online:
  • 913 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 920))

Abstract

In this paper, after extensive study and experimentation, the first classification of digraphs structures \(\mathcal {D}\) corresponding to one-dimensional (1D) fractional continuous-time and discrete-time systems has been presented. It was found that digraph structures created can be divided into three classes \(\mathcal {K}_1\), \(\mathcal {K}_2\), \(\mathcal {K}_3\) with a different feasibility for different polynomials. Additional two cases of possible input-output digraph structure \(\mathcal {IO}_{1}\), \(\mathcal {IO}_{2}\) was investigated and discussed. It should be noted, that the proposed digraph classes give the opportunity to easily determine the realization of the dynamic system as a set of matrices \((\mathbf {A},\mathbf {B},\mathbf {C})\). The proposed digraphs classification was illustrated with some numerical examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dai, L. (ed.): System Analysis Via Transfer Matrix, pp. 197–230. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0002482

    Book  Google Scholar 

  2. Das, S.: Functional Fractional Calculus. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20545-3

    Book  MATH  Google Scholar 

  3. Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and Applications. Series on Pure and Applied Mathematics. Wiley-Interscience, New York (2000)

    Book  Google Scholar 

  4. Hryniów, K., Markowski, K.A.: Parallel digraphs-building algorithm for polynomial realisations. In: Proceedings of 2014 15th International Carpathian Control Conference (ICCC), pp. 174–179 (2014). http://dx.doi.org/10.1109/CarpathianCC.2014.6843592

  5. Hryniów, K., Markowski, K.A.: Digraphs minimal realisations of state matrices for fractional positive systems. In: Szewczyk, R., Zielinski, C., Kaliczynska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing, vol. 350, pp. 63–72. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15796-2_7

    Chapter  Google Scholar 

  6. Hryniów, K., Markowski, K.A.: Classes of digraph structures corresponding to characteristic polynomials. In: Challenges in Automation, Robotics and Measurement Techniques: Proceedings of AUTOMATION-2016, 2–4 March 2016, Warsaw, pp. 329–339. Springer (2016). https://doi.org/10.1007/978-3-319-29357-8_30

    Chapter  Google Scholar 

  7. Hryniów, K., Markowski, K.A.: Parallel multi-dimensional digraphs-building algorithm for finding a complete set of positive characteristic polynomial realisations of dynamic system. In: Applied Mathematics and Computation (Submitted)

    Google Scholar 

  8. Kaczorek, T., Sajewski, L.: The Realization Problem for Positive and Fractional Systems. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-04834-5

    Book  MATH  Google Scholar 

  9. Luenberger, D.G.: Positive linear systems. In: Introduction to Dynamic Systems: Theory, Models, and Applications. Wiley, New York (1979)

    Google Scholar 

  10. Machado, J., Lopes, A.M.: Fractional state space analysis of temperature time series. Fract. Calc. Appl. Anal. 18(6), 1518–1536 (2015)

    Article  MathSciNet  Google Scholar 

  11. Machado, J., Mata, M.E., Lopes, A.M.: Fractional state space analysis of economic systems. Entropy 17(8), 5402–5421 (2015)

    Article  Google Scholar 

  12. Markowski, K.A.: Digraphs structures corresponding to minimal realisation of fractional continuous-time linear systems with all-pole and all-zero transfer function. In: IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6 (2016). https://doi.org/10.1109/AQTR.2016.7501367

  13. Markowski, K.A.: Digraphs structures corresponding to realisation of multi-order fractional electrical circuits. In: IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6 (2016). https://doi.org/10.1109/AQTR.2016.7501368

  14. Markowski, K.A.: Determination of minimal realisation of one-dimensional continuous-time fractional linear system. Int. J. Dyn. Control 5(1), 40–50 (2017). https://doi.org/10.1007/s40435-016-0232-3

    Article  MathSciNet  Google Scholar 

  15. Markowski, K.A.: Relations Between Digraphs Structure and Analogue Realisations with an Example of Electrical Circuit, pp. 215–226. Springer (2017). https://doi.org/10.1007/978-3-319-54042-9_20

    Chapter  Google Scholar 

  16. Markowski, K.A.: Two cases of digraph structures corresponding to minimal positive realisation of fractional continuous-time linear systems of commensurate order. J. Appl. Nonlinear Dyn. 6(2), 265–282 (2017). https://doi.org/10.5890/JAND.2017.06.011

    Article  MathSciNet  MATH  Google Scholar 

  17. Markowski, K.A.: Minimal positive realisations of linear continuous-time fractional descriptor systems: two cases of input-output digraph-structure. Int. J. Appl. Math. Comput. Sci. 28(1), 9–24 (2018)

    Article  MathSciNet  Google Scholar 

  18. Markowski, K.A., Hryniów, K.: Finding a set of (A, B, C, D) realisations for fractional one-dimensional systems with digraph-based algorithm, vol. 407, pp. 357–368. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45474-0_32

    Google Scholar 

  19. Martynyuk, V., Ortigueira, M.: Fractional model of an electrochemical capacitor. Signal Process. 107, 355–360 (2015)

    Article  Google Scholar 

  20. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differenctial Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  21. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order systems and Control: Fundamentals and Applications. Springer, London (2010). https://doi.org/10.1007/978-1-84996-335-0

    Book  MATH  Google Scholar 

  22. Muresan, C.I., Dulf, E.H., Prodan, O.: A fractional order controller for seismic mitigation of structures equipped with viscoelastic mass dampers. J. Vibr. Control 22(8), 1980–1992 (2016). https://doi.org/10.1177/1077546314557553

    Article  MathSciNet  Google Scholar 

  23. Nishimoto, K.: Fractional Calculus. Decartess Press, Koriama (1984)

    MATH  Google Scholar 

  24. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0747-4

    Book  MATH  Google Scholar 

  25. Ortigueira, M.D., Rivero, M., Trujillo, J.J.: Steady-state response of constant coefficient discrete-time differential systems. J. King Saud Univ. Sci. 28(1), 29–32 (2015)

    Article  Google Scholar 

  26. Petras, I., Sierociuk, D., Podlubny, I.: Identification of parameters of a half-order system. IEEE Trans. Signal Process. 60(10), 5561–5566 (2012)

    Article  MathSciNet  Google Scholar 

  27. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  28. Podlubny, I., Skovranek, T., Datsko, B.: Recent advances in numerical methods for partial fractional differential equations. In: 15th International Carpathian Control Conference (ICCC), pp. 454–457. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Andrzej Markowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Markowski, K.A. (2020). Digraphs Structures with Weights Corresponding to One-Dimensional Fractional Systems. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-030-13273-6_24

Download citation

Publish with us

Policies and ethics