
Undergraduate Topics in Computer
Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky, Department of Computer Science, University of Oxford,
Oxford, UK
Chris Hankin, Department of Computing, Imperial College London, London, UK
Dexter C. Kozen, Computer Science Department, Cornell University, Ithaca, NY,
USA
Andrew Pitts, William Gates Building, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Department of Applied Math and Computer Science,
Technical University of Denmark, Kgs. Lyngby, Denmark
Steven S. Skiena, Department of Computer Science, Stony Brook University, Stony
Brook, NY, USA
Iain Stewart, Department of Computer Science, Science Labs, University of
Durham, Durham, UK
Mike Hinchey, Lero, Tierney Building, University of Limerick, Limerick, Ireland

‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems, many of which include fully
worked solutions.

The UTiCS concept relies on high-quality, concise books in softback format, and
generally a maximum of 275-300 pages. For undergraduate textbooks that are likely
to be longer, more expository, Springer continues to offer the highly regarded Texts
in Computer Science series, to which we refer potential authors.

More information about this series at http://www.springer.com/series/7592

http://www.springer.com/series/7592

Kingsley Sage

Concise Guide
to Object-Oriented
Programming
An Accessible Approach Using Java

123

Kingsley Sage
School of Engineering and Informatics
University of Sussex
Falmer, East Sussex, UK

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-030-13303-0 ISBN 978-3-030-13304-7 (eBook)
https://doi.org/10.1007/978-3-030-13304-7

Library of Congress Control Number: 2019931822

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-13304-7

Preface

The twenty-first century continues to experience the relentless expansion of the IT
revolution into our daily lives. We consume services, do our shopping on-line,
listen to music streams and watch movies on demand. The impact of social media
has had a profound impact on our society and has changed fundamentally the way
we obtain and consume news, information and ideas. There is little sign of a
slowdown in this dramatic shift in our relationship with technology. Vast research
budgets are being applied to the development of autonomous vehicles, and in
applying Artificial Intelligence to change the way we live. But it has also changed
the demand for skills within our workforce. The demand for manual skills is in
decline, and the demand for IT and programming skills is rising at an unprece-
dented rate.

In comparison to the industrialists of the nineteenth and twentieth centuries, the
twenty-first-century entrepreneurs are experts in IT, programming, software design
and development, and developing practical applications using concepts such as
Artificial Intelligence for our daily lives. With this profound paradigm shift has
come a need for the workforce of many industrialised nations to evolve. Govern-
ments recognise the need for a huge increase in the workforce with programming
skills. In the United Kingdom, and in many other industrialised nations, core coding
skills are now a part of the secondary school curriculum. Learning to program is no
longer considered to be just a part of the traditional journey of the Computer
Science undergraduate, but a broader skill that underpins an IT literate workforce
for the modern age.

What is the Purpose of This Book?

When I was first approached to write this book, it was suggested that its purpose
was to provide an accessible introduction to coding and the world of Object Ori-
ented Programming (OOP). Standard texts on the subject often fall between those
that provide only a very lightweight treatment of the subject (“a little knowledge
can be a frustrating thing”), and those that run to 500 pages or more that are rather
better suited as reference texts or as support on a lengthy period of study in depth.
The challenge for this book is to provide an accessible introduction to the world of

v

coding and OOP in a way that is helpful to the first-time coder and allows them to
develop and to understand their knowledge and skills in a way that is relevant and
practical. The examples developed for this book are intended to show how OOP
skills can be used to create applications and programs that have everyday value,
rather than examples that have been synthesised solely to demonstrate an academic
point.

The reader should be able to use this book to develop a solid appreciation of
OOP and how to code. The programming language used throughout is Java. Java
has been chosen as it can be used across all computing platforms, because it has a
commercial skill that has a clear on-going value derived from its adoption as a core
language for smartphone applications on the Android platform, and as the language
at the heart of the Java EE 8 Jakarta Enterprise scale framework. The book focusses
on the core Java language and does not consider smartphone or EE 8 coding, as
these require skills over and above what this book is about. However, a knowledge
of core Java coding and some of the related issues also discussed in this book would
form an appropriate pre-requisite for the further study of these topics.

Although this book uses Java as its illustrative programming language, many
of the ideas may be translated directly into other OO languages such as C++, C#
and others. Throughout this book, programming in Java is demonstrated using the
BlueJ Integrated Development Environment (IDE). BlueJ is a well-established IDE
for learning BlueJ and is widely used in schools and Universities. Eclipse is the
closest product to an industry standard for the development of Java, but it is often
found too complex for the task of teaching and learning.

Who is This Book Aimed at?

As someone with over 20 years of teaching experience from level 3 through to
postgraduate, from traditional University teaching to adult education, I have never
been able to identify satisfactorily what defines the ability of an individual to learn
to program. Suffice to say, all that is really needed is an interest in the subject and
time. The aim of this book is to provide an accessible entry into the world of Object
Oriented Programming (OOP).

The book does not assume any prior knowledge of coding, or any prior
knowledge of software engineering or OO, not does it require any prior exposure to
mathematics. Whilst such prior knowledge is not unhelpful, it is not essential to
learn to program. Instead, this book takes a more everyday experience to the
subject, drawing on examples from everyday experience to explain what OO is and
why it is relevant in the modern programming experience. As such, the book is
aimed at those who are coming to OO programming for the first time. It is therefore
likely to be useful as a one-semester book introducing the topic to those new to the
study of computer science at the undergraduate and postgraduate levels, and those
who are just learning for the purpose of self-improvement or professional devel-
opment. Whilst the book is aimed at those with no prior coding experience, it does

vi Preface

explore broader topics surrounding coding. This with some prior knowledge may
opt to skip some of the early chapters. That does not impact the usefulness of this
book in terms of learning to code in Java.

What’s in the Book?

Chapter 1 starts with an overview of what programming and coding is all about. It
includes some useful historical perspective on the development of programming
languages and the core ideas that underpin all programming languages. It intro-
duces the idea of a computing machine and concepts such as a compiler. This
section is helpful to those who have no prior experience of computing as it helps
subsequent understanding of some of the core coding processes and terminology.
The chapter then continues to discuss how the need for OOP arose in the period
from the end of the 1970s to the present day, and a discussion of why it is
considered important to help us solve modern-day programming problems.

Chapter 2 provides a short introduction to programming in Java using BlueJ. It is
intended to provide just enough knowledge and skills to create and execute a
single-class Java program under BlueJ. This is significant as it then facilitates
discussion of the core principles of procedural and structured programming, such as
loops and conditional statements. Those with prior experience of coding using
languages such as C and Python may opt to skip this chapter, as they would
undoubtedly be familiar with much of the content. I chose to organise the book this
way as the basic procedural and structured coding constructions are common to
almost all programming (or at least those that owe their syntactic ancestry to C), and
getting these constructions understood at this stage allows for a more specific focus
later on the principles of OO.

Chapter 3 gets into the details of what OO really is and how it can be applied to
solve modern programming challenges. We start with a discussion of what classes
and objects are, and how the construction and execution of an OO program parallels
the way that human organisations such as a large office operate. Such analogies are
invaluable in appreciating the true benefits of the OO paradigm. In this chapter, we
develop a set of small multi-class Java applications and consider the cornerstone
issues in OO design of class cohesion and coupling.

Chapter 4 considers a range of Java library objects and packages such as the
String and the ArrayList, and introduces the idea of the Application Pro-
gramming Interface (API). This enables the reader to start building more complex
applications involving simple linear collections of objects. These ideas are devel-
oped using a set of simple programs that can be enhanced in many different ways as
an exercise for the reader.

Chapter 5 delves further into the OO paradigm and considers how OO design
forms an essential part of producing a useful solution to a problem. The chapter
introduces the idea of class polymorphism (super and sub-classes) and how this can
be used to create a program with a structure that more closely mirrors an underlying

Preface vii

domain. The chapter also looks further into the idea of selecting classes that are
suited to solving specific problem and so also has elements of software engineering
principles and practice.

Chapter 6 considers what to do when code encounters an error condition.
Software systems are not immune to errors either at the coding or at the run time
phases, and modern software systems need to be built in a robust manner so that
they behave in a predictable manner when something goes wrong. The exception
handling mechanism is introduced, along with steps on laying out a program to
assist in debugging it. This chapter also considers practical measures that are
adopted in defensive coding.

Chapter 7 digs deeper into the work of arrays and collections, notably fixed
length arrays, the HashMap and HashSet, and shows how different collection
types can be used to effectively model different real-world collections of data. This
chapter also includes some background on the underlying ideas for these collection
types, such as the hash table.

Chapter 8 provides an introduction to building a Graphical User Interface
(GUI) using Swing. Although some may consider Swing a relatively old library for
the development of a GUI, the key ideas are relevant across a range of other
libraries such as JavaFX, and Swing forms more of a core element of the Java
landscape. The development of GUIs is a large topic in its own right, so this chapter
can only ever serve as an introduction. In this chapter, we also consider the concept
of a design pattern, specifically the idea of Model View Controller (MVC) archi-
tecture, and how a Java application can be constructed in a well-recognisable design
configuration.

In the final Chap. 9, two complete applications are presented, from conceptual
design to implementation to help cement the ideas presented in the previous
chapters. One is a text-based application with no Graphical User Interface (GUI).
The other is a small GUI-based application to give a sense of how to build a GUI on
top of an underlying application.

All the code examples used in this book and the two example projects described
in Chap. 9 are available as on-line resource accompanying this book.

It is my hope that this book will inspire the reader to learn more about the world
of OO and coding. As such, it represents the start of a learning journey. As with all
endeavours, clarity will improve with time and effort. Few will write an
award-winning book at their first attempt. Few artists will paint their defining
masterpiece at the outset of their career. Programming is no exception and your
skills will improve with effort, time, reflection and experience. But every learning
journey has to start somewhere. For many, the story starts with the codebreakers of
Bletchley Park in the United Kingdom during WWII, but we shall start our story in
early nineteenth-century France …

Falmer, UK
January 2019

Kingsley Sage

viii Preface

Contents

1 The Origins of Programming . 1
1.1 The Stored Digital Program is not a New Idea 1
1.2 The Birth of the Computing Age . 3
1.3 The Origin of Programming Languages . 4
1.4 The Object Oriented Revolution . 6
1.5 The Java Language . 7
1.6 Tools of the Trade . 8

2 Procedural Programming Basics in Java . 11
2.1 First Program and Workflow . 11
2.2 Primitive Data Types . 16
2.3 The Procedural Programming Paradigm . 19
2.4 Sequence . 20
2.5 Alternation . 22
2.6 Repetition . 25
2.7 More on Methods . 29
2.8 Bringing It All Together . 32

3 Getting into Object Oriented Programming 37
3.1 Object Oriented in a Social Context . 37
3.2 Introducing the OO Class . 39
3.3 The Anatomy of a Class . 40
3.4 Creating Objects at Run Time . 47
3.5 Accessor and Mutator Methods . 52
3.6 Choosing the Right Classes . 55

4 Library Classes and Packages . 57
4.1 Organisation of Java into the Core and Packages 57
4.2 Using Library Classes . 58
4.3 The String Class . 59
4.4 Application Programming Interfaces (APIs) 62
4.5 Using Javadocs in BlueJ . 64

ix

4.6 The ArrayList Class . 67
4.7 The Wrapper Classes . 72

5 Modelling the World the Object Oriented Way 75
5.1 Hierarchies in the Real World . 75
5.2 Introducing Super and Sub-classes . 77
5.3 Adding Constructors . 81
5.4 Rules of Inheritance and Over-Riding . 82
5.5 Method Polymorphism . 86
5.6 Static and Dynamic Type . 88
5.7 Abstract Classes . 90
5.8 Interfaces . 92
5.9 Class Variables and Static Methods . 95

6 Dealing with Errors . 99
6.1 The Nature of Errors . 99
6.2 Coding Defensively . 101
6.3 Using the Debugger Tool . 104
6.4 Unit Testing . 108
6.5 System Testing . 115
6.6 The Basics of Exception Handling . 116
6.7 More Advanced Exception Handling . 121

7 Deeper into Arrays and Collections . 123
7.1 Fixed Length Versus Dynamic Length Arrays 123
7.2 Fixed Length Arrays of Primitive Types 124
7.3 Fixed Length Arrays of Objects . 126
7.4 Multi-dimensional Arrays . 127
7.5 Sorting Data . 130
7.6 Hash Functions . 136
7.7 The HashMap Class . 138
7.8 The HashSet Class . 141
7.9 Iterating Through Collections . 143

8 Adding a Graphical User Interface . 147
8.1 The Model View Controller MVC Design Pattern 148
8.2 Introducing Swing and AWT . 151
8.3 The Taxonomy of a GUI . 152
8.4 A Simple First Swing Application . 153
8.5 Event Handling . 156
8.6 Centralised and Distributed Event Management 158
8.7 Applying the MVC Design Pattern . 162
8.8 Adding Menus, Text Fields, Text Areas and Images 167
8.9 Layout Managers . 172

x Contents

9 Example Applications . 179
9.1 Software Engineering Process Models . 179
9.2 The Good Life Foods Project . 180
9.3 The Guessing Game Project . 186
9.4 Final Thoughts . 189

Index . 191

Contents xi

About the Author

Dr. Kingsley Sage is a Senior Teaching Fellow in Computing Sciences in the
Department of Informatics at the University of Sussex, Brighton, UK, and a Senior
Fellow of the Higher Education Academy (SFHEA). He has more than 20 years of
teaching experience, from the level of further/continuing education through to
postgraduate-level teaching, in both traditional university teaching and adult
education.

xiii

	Preface
	What is the Purpose of This Book?
	Who is This Book Aimed at?
	What’s in the Book?

	Contents
	About the Author

