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Abstract. The construction of efficient distributed simulation engines
for Discrete Event Systems (DES) remains a challenge. The vast major-
ity of simulations that are developed today are based on federation of
modular sequential simulations. This paper proposes the steps to fill the
gap from specifications based on Petri Nets to an efficient simulation of
the net throughout a distributed application devoted to this purpose and
exploiting the versatility of cloud infrastructures. Distributed simulation
of DES is tackled through the proposal of: (1) an adapted execution
model (a representation) of PN that is based in the generation and man-
agement of events related to the enabling and occurrence of transitions;
(2) simple simulation engines for these adapted PN, each hosting a sub-
set of transitions; (3) an scheme for deployment of a set of connected
simulation engines, each one supporting a part of the net; and (4) a sim-
ple mechanism for dynamic load balancing of the simulation workload by
merging/splitting the subsets of transitions hosted in simulation engines.

Keywords: Distributed simulation · Discrete event systems · Dynamic
load balancing · Resource Management.

1 Introduction

In many fields, ranging from healthcare monitoring to industrial manufacturing
applications, the systems are becoming to be very large and complex. Moreover,
they must be designed as part of an interconnected world. Smart systems (Cities,
Buildings, Factories, Logistics) are examples of these systems. They share a set of
characteristics such as: involvement of physical and computational interactions,
integration of human behaviour into the processes, consideration of sustainabil-
ity and economical requirements, and achievement of unprecedented levels of
scale and complexity. The construction of models for these systems, that retain
the essential elements and parameters for its design, is an accepted strategy to
cope with these systems. Nevertheless, the modelling of these systems often give
rise to models that they cannot be used in practice in the design, analysis or
implementation processes. These problems arise because the high-level seman-
tics of the models obtained or the size of the model itself. In both cases, this



makes the model unmanageable for the available tools inside the engineering
process oriented to: design, evaluation of architectural solutions or assessment
of the system performance.

For this kind of complex and scalable systems, simulation becomes the only
alternative available in practice for the different tasks in the life cycle of the
system. In this case, it is an essential tool for system operation, to dynamically
enable the continuous design, configuration, monitoring and maintenance of op-
erational capability, quality, and efficiency. The capacity to trigger simulations
in a short period of time to anticipate the effect of control actions is an essential
tool to transform the high-volume of continuously streaming data into knowledge
for decision support.

This paper is focused in Discrete Event Systems (DES), where the evolution
from one system’s state to another is produced as a consequence of the appear-
ance of a discrete relevant fact for the system that is called event. The system’s
actions happen or are executed while the system is in a state and have an asso-
ciated temporary duration, an economic cost, etc. The completion of a system
action causes the state change of the system in an atomic manner. The simula-
tion of a DES consists in the execution of a model that represents the system.
This model must represent the state of the system and the state transitions that
are the discrete state changes that may occur at discrete points in simulation
time, and when an event happens [13].

The introduction of acceleration techniques in simulation applications has
been a permanent objective that has been strongly related with the growth of the
size of the systems to be simulated. Parallelism and distribution are techniques
oriented to this goal. However, to obtain simulation execution times better than
in a centralized simulation it is necessary: a careful selection of the execution
model to be used, the partition and distribution of the model to be simulated,
and the analysis of message traffic between the simulation engines, which in
general are closely coupled tasks.

Parallel and Distributed Discrete Event Simulations tools offer the ability to
perform detailed simulations of large-scale computer networks [10], traffic [33],
and military applications [29], among other applications. Despite the relevance
of large-scale DES simulations, this type of problem is far from be solved and
poses important challenges [15, 11]. The difficulty to move these applications to
the cloud can be exemplified by the modelling and simulation of the cloud itself
[5]. A review of thirty-three cloud simulators is presented in [4], but just one of
the tools reviewed cloud2Sim, which is an extension of the standard facto for
cloud simulation CloudSim, considers distributed simulations.

The main challenges of Distributed DES simulations pointed in [14, 11] are:

– The definition of modeling languages allowing the generation of efficient
parallel and distributed simulation code.

– The statement of a clear execution semantic of the model, and the
execution policy of its interpreter [19, 27]. They must be oriented to a
distributed implementation.



– The availability of load balancing mechanisms to cope with the unpre-
dictability of the underlying execution environment [8, 7].

– The incorporation of the economic cost and energy consumption, in
addition to the traditional speedup metric in distributed simulations.

Petri Nets (PNs) have been pointed out as a good formalism for modelling
realistic features and perspectives of reactive and distributed systems, such as
control flow, data, resources, and for analyzing and verifying many properties.
The automatic anaysis of properties is supported by software tools, and when
formal analysis become impracticable, the model may be simulated. In this paper
we focus on these challenges using PNs. It covers the automatic translation of
PN specifications in efficient parallel and distributed code, the impact of distri-
bution on the execution policies, the definition of simple interpreters to support
a distributed simulation, and the support for efficient load balancing between
distributed simulators. In this paper we specialize the methodology presented in
[30] for conceptual modeling of DES in distributed simulation. The methodology
is supported by a high level PN (HLPN) based specification supporting modu-
larity and hierarchy for the modeling of complex systems that was presented in
[21]. In our previous work [20], we show how to translate a HLPN into a flat
model by means of an elaboration process. In this paper we focus into the process
to automatize the translation of flat PN models to efficient parallel simulation
code, and the architecture for an efficient distributed simulation.

2 Related work

There has been a significant amount of work in the field of parallel and dis-
tributed DES simuation. A historical review can be found in [9], and many of
the current challenges of the discipline has been recently collected in [14, 11]. An
Introduction to the the discipline can be found in the classical books of R.M.
Fujimoto [13], and B.P. Zeigler [34].

The discipline began defining logical processes (LP) and the sychronization
problem with what is known as the Chandy/Misra/Bryant algorithm. Synchro-
nization protocols and variants of conservative and optimistic approaches con-
tinues to be a focus of research to address synhronization and performance issues
associated with executing parallel discrete event simulations in cloud computing
[18].

The other focus of research is concerned with an architectural point of view,
the development of midleware, frameworks and standards. The High Level Ar-
chitecture (HLA) is an standard developed by the United State’s Department
of Defense to perform distributed simulations for military purposes that became
an Open IEEE Standard [1], and has been adopted as the facto standard for fed-
erating simulations [31]. Dynamic balancing for HLA-based simulations remains
a challenge [8].

Distributed computing programs do not have the same requirements as those
of parallel DES programs and thus infrastructure must be specifically designed



to support this simulation environment. In [12], Fujimoto et al. propose a mas-
ter/worker architecture called Aurora. Cloud computing is focusing the research
with the expectation that the development of simulations-as-a-sevice will hide
the difficulty of developing efficient parallel simulation and will made distributed
simulation broadlly accesible to all users [28].

Related with the use of PN for simulating DESs, the translation of a system
model expressed by a PN to an actual hardware or software system with the
same behavior as the model is a PN implementation. Given a PN model of a
DES, the simulation of the system can be done by playing the token game, i.e. by
moving tokens when transitions are enabled. If a deterministic or stochastic time
interpretation is associated to transitions – Timed PNs (TPNs) or Stochastic
PNs (SPNs) –, the interpretation of the TPN or SPN yields, actually, a Discrete
Event Simulation system.

The implementation of a PN can be classified as compiled or interpreted.
The compiled implementation generates code whose behavior corresponds to PN
evolutions, while an interpreted PN codifies the structure and marking as data
structures used by one or more interpreters to make the PN evolve. Compiled im-
plementations has been the option for the development of discrete event control
systems [22, 26]. Interpreted implementations has the advantage of separating
the model specification from the simulator, which provides a number of benefits
summarized by Z. Zeigler in [34]: (1) The model is not wired with the simulator,
which enables the portability of the model to other simulator and interoperabil-
ity at a high level of abstraction; (2) Algorithms for distributed simulation can
be presented independently of the model; and (3) Model complexity is related
with the number of resources required to correctly simulate a model. All these
benefits are related with requirements for a distributed simulation. The principle
of separation of model and simulator remains the base for scale resources accord-
ing to the scale of the model, and for workload balancing by moving parts of
the model between distributed simulator engines, and reusing good well defined
PDES algorithms.

Chiola and Ferscha in [6], and Nicol and Mao in[24] have shown the TPN
formalism can contribute to the efficient implemenation of distributed discrete
event simulations thanks to the PN structure. These works focused on good par-
titioning algorithms based on the PN structure and synchronization algorithms.
In these works, the TPN is decomposed into a set of LP assuming a FIFO com-
munication. The interface of the LP is defined by a subset of places, and arcs
connecting with this places are replaced by communication channels. LPs inter-
act exchanging time-stamped messages that represent token transfers , and each
LP executes a simulation engine that implements the same simulation estrategy
to interpret the PN partition and to preserve causality with events simulated by
other LPs. However, these approaches does not consider the automated transla-
tion of the PN structure to efficient code for simulation engines.
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Fig. 1: PN-based process from specification to distributed model execution.

3 Event driven simulation based on Petri nets

3.1 The overall methodological approach

In this section we present an approach to automatize the translation of TPN
specifications into efficient parallel and distributed simulation code. The pro-
posed steps are part of a methodological approach to manage the complexity
of developing the logic of a complex system taking into account functional and
not functional requirements, and gradually incorporating restrictions imposed
by the underlying hardware infrastructure that was presented in [30]. Figure 1
depicts some steps of the methodology: Functional models of systems are built
focusing on a set of concurrent communicating processes competing for shared
resources. Qualitative analysis checks the model and help to find maximum con-
currency. The operational model enriches the model with characteristics of the
execution platform to develop a quantitative analysis. This analysis provides in-
formation useful for the partition of the model providing metrics required for
the distributed execution. Figure focuses on the last steps:

Elaboration The objective of the first steps is the modelling of Complex and
Large Scale DES. It requires a formal description of different facets supported
by a hierarchical and component decomposition. Modular and hierarchical PN
specification, suh as introduced in [21], provide more compact and manageable
descriptions. However, the interpretation of a High Level model can introduce im-
portant sources of inefficiency due to higher levels of abstraction such as efficient
matching to evaluate enabled transitions [23], or introduce complex synchroniza-
tion protocols in distributed simulations. Instead of the direct emulation of high
level models, we propose transform the original model to be simulated into a flat
Place/Transition net model. This transformation process process called elabora-



tion was illustrated [20] with the elaboration of a high level PN to a flat model
of sequential state machines.

Compilation. The compilation stage transforms a flat Place/Transition net
into executable code/data. A classical PN engine follows a repetitive cycle that
involves: a) to scan enabling of transitions; b) to fire some enabled transitions
(executing, maybe, some associated activity), and c) to update the marking (the
state) of the PN. Although the elaboration process simplifies the complexity of
the enabling tests of transitions, removing the need of unification algorithms,
the enabling test in a Place/Transition net remains to consume most of the
interpreter loop.

Distribution. Partitioning requires to proceed, a priori, identifying the good
subnets in which the original one is divided. The initial model partitition can
be supported by applying structural and behavioral anlaysis [16], in this sense
strategies based into the identification of sequential state machines can be used
(computing for example p-semiflows in an incremental way). Alternative parti-
tion approaches can be found in [32, 22]. The hardware architecture and syn-
cronization algorithms can be taken into account [7, 2, 20].

Load Balancing. Thanks to a simulation based on identical simulation en-
gines working on data structures and variables representing PNs, it is possible
to realize a dynamic reconfiguration of the initial partition: (1) by fusion of the
data structures of two simulation engines in only one; or (2) by splitting the
data structure contained in a simulation engine into two separated data struc-
tures over two distinct simulation engines. This dynamic reconfiguration is not
possible in simulation contexts where the system to be simulated is not a data
structure (e.g. the system is a program that must be compiled).

3.2 Simulation of PNs oriented to distributed implementation

We can compare the interpretation of PN simulation engine with the interpre-
tation of rule based systems (RBS). Both describe how a model evolves in time.
RBS take advantage of temporal redundancy based on the idea that most of data
in memory does not change when a rule is fired in each interpretation cycle, and
most of rules remains enabled or not enabled. Based on this idea, a compilation
process builds a (RETE) network that connects state changes with rules affected
by state changes, and store partial matching operations. An adaptation of the
RETE network for the centralized interpretation of HLPNs was proposed in [23].
It is possible to go beyond improving the efficiency of the PN interpreter by 1)
removing complex matching operations in the elaboration process; 2) replacing
them by simple linear functions; and 3) incorporating postconditions to the com-
pilation process. In RBS postconditions are left out of the compilation process
due to state changes in postconditions depends on data modifications and can
not be related with state changes. However PNs explicity specifiy preconditions
and state changes giving the possibility of compiling them in a network. This
approach is followed in [3] defining the so called Linear Enabling Function
(LEF) of a transition in Place/Transition specifications that allow to characterize
when a transition is enabled (can occur).



Fig. 2: Graphical, textual and splitted textual specifications of a TPN.

We propose in this section the translation of the structure and marking of
a Place/transition net to a set of LEFs as optimized code for distributed sim-
ulation engines.The LEF of a transition t, ft : R(N ,m0) −→ Z, characterizes
its enabling in such a way that t can occur, for a marking, m ∈ R(N ,m0), iff
ft(m) ≤ 0. For example, for transition T2 in the net of Figure 2, its LEF is:
fT2(m) = 2− (m[A] + m[D]),∀m ∈ R(N ,m0), where m0 is the initial marking
depicted in the Figure 2 (places A, C marked with a token and the rest of places
unmarked). Observe that at m0, the value of the LEF is fT2(m0) = 1 > 0, i.e.
the transition T2 is not enabled at m0. Nevertheles, at the reachable marking,
m, that contains one token in place A and one token in D, fT2(m) = 0 indicating
that the transition T2 is enabled and it can occur.

The use of LEFs, as presented before for the characterization of the enabling
of a transition, requires a explicit representation of the marking of the net and
the LEF itself as a function. For a distributed simulation this give rise to two
problems that make this execution model of a PN no well-adapted for this pur-
pose: (1) The explicit representation of the marking in a distributed environment
is a set of shared variables between a set of distributed simulation engines that
requires mechanisms for the maintenance of coherence and consistency of the
marking variables (this is is in fact a botleneck for distributed simulation); (2)
The funcional representation of the LEF requires its continuous evaluation for
the marking (each time that some change is produced) in order to determine the
enabling of a transition.

To save this two problems, the LEF mechanism for a transition is imple-
mented according to the following principles: (1) Only the current value of the
LEF (initially this value corresponds to the value of the LEF at m0 and com-
puted in compilation time) is stored; (2) Each time a transition occur in the



net, a constant is sent to each transition which enabling has been affected by
the occurrence of the transition. This constant is used for the updating of the
LEF of the affected transition (for example, the occurrence of a transition always
affects itself).

With this strategy, the explicit representation of the marking and the re-
evaluation of the LEF are not needed. The changes of a LEF are based in the
constants sent by the transitions that modify its enabling conditions. This is
the reason why this execution model for PN’s simulation becomes a Discrete
Event Simulation because the events are the constants sent by the occurrence of
a transition to all transitions whose enabling conditions has been changed by its
occurrence, and the simulation’s state becomes the current values of the LEFs.

That is, if m t′−→m′, ft(m
′) can be computed from the value of ft(m) and

a static parameter known at compilation time that represents the change of ft
after the occurrence of t′. This parameter corresponds to changes in the contents
of tokens of the input places of t as a consequence of the occurrence of t′. Thus,
the updating equation for any LEF when t′ occurs takes the form ft(m

′) =
ft(m) +UF (t′ −→ t), where UF (t′ −→ t) is known as the Updating Factor of t′

over t obtained from the structure of the net and its initial marking.
According to the previous comments, the compilation of a Place/transition

net produces a representation of the net where there is an entry for each transi-
tion (information of the LEF mechanism), t, grouping: (1) The variable main-
taining the current value of the LEF and initialized to ft(m0); and (2) The list
of updating factors (simulation’s events), UF (t −→ t′), that will be sent to each
t′ ∈ (•t)•∪ (t•)• whose enabling conditions have been affected by the occurrence
of t. Observe that the partition of a model for a distributed simulation only
requires define the set of transitions to be grouped in each one of distributed
simulation engines and load the previous data associated to the transitions in
the corresponding engine. The information associated to each transition corre-
sponding to the described LEF mechanism is independent to the information
of any other transition. So, in order to realize the dynamic load balancing of
the simulation’s workload, it is enough to move from one engine to another the
information of the LEF mechanism of the transitions to be moved. See Figure 3.

The kernel of each distributed simulation engine to implement the Discrete
Event Simulation of the Petri Net, according to the execution model based on
the LEF mechanism described before, essentially: (1) scans the list of the vari-
ables containing the current values of the LEFs in order to detect the enabled
ones (values less than or equal to 0); and (2) then proceeds to make all the oper-
ations corresponding to the occurrence of the enabled transitions, executing the
associated actions, and sending the list of Updating Factors stored together the
value of the LEF. Figure 4 presents an algorithm that implements this kernel
of the basic simulation engine [3], using the following information associated to
each transition, t′, belonging to the part of the PN model to be simulated (See
Figure 3): (1) Identifier of t′. A global name recognised in all sites of the simu-
lation process; (2) τ(t′). Deterministic firing time associated to transition t′.
It stands for the duration time of the action associated to the ocurrence of t′; (3)



0t1

1t2

t1

+1

t2

+1

t4

-1

t1

+1

t2

+1

t3

-1

0t3

2t4

-1

t4

-1

t4

+2

t1

-1

t3

-1

t3

+1

t2

LEFs
IUL PULIdentifier/Counter

ft1 ft2 ft3 ft4

00:00 0 1 0 2 t1 t3

00:00 1 2 1 2 t4,-1,1 t4,-1,2

00:01 1 1 1 1 T4,-1,2

00:02 1 1 1 0

1

0

2
t4

00:02 1 1 1 2 t1,-1,3 t3,-1,33

00:03 0 1 0 2 t1 t3

t2,-1,1

Time 0: Fires t1 ,t3

Time 2: Fires t4

Clock LEF counters Future Updating Nodes(FUL) Event List (EL)

Time 3: Fires t1 ,t3

Simulation Log

Fig. 3: Compilation result for the PN in Fig. 2 using the LEF mechanism.

Counter. Variable containing the current value of the LEF ft′(m),initialized
with ft′(m0), and updated whenever the transition –or a transition affecting it–
occurs, according to the received Updating Factor; (4) Immediate Updating
List (IUL(t′)) Set of transitions (•t′)• whose LEFs must be updated after the
occurrence of t′ containing the corresponding Updating fator to be sent (Note
that (•t′)• includes t′); (5) Projected Updating List (PUL(t′)) Set of transi-
tions (t′•)• whose LEFs must be updated after the occurrence of t′ containing
the corresponding Updating fator to be sent.

The algorithm of Figure 4 receives the LEFs, a list of transition nodes repre-
senting the PN to simulate for the simulation engine, and the limit of the virtual
time to be simulated. EL contains enabled transitions.FUL contains Future Up-
dating Nodes (FUNs), and the function insert-FUL() maintains them ordered by
time. FUL plays the role of the Future Event List in an event-driven simulation
algorithm for DES. A FUN holds: a pointer (pt) to the transition to be updated,
the updating factor UF(t′ → t) delivered by each fired transition (t ∈ (t′•)•), and
the time (time) at which the updating must take effect. head-FUL is a pointer
to FUL, pop(FUL) pops and returns the head of FUL, and we access the fields
of FUNs using the dot notation. The variable clock holds the current simulation
time. Figure 3 shows transition nodes in the previously presented PN.

Observe that the interpreter inmediately apply IUF updating factors, which
represents removing tokens from previous places, once a transition occurs, but
insert events in PUL, which represent that tokens will be appear in posterior
places at future clock time. It is important to note also that the interpreter
takes all enabled transitions in the EL in order, solving in this way conflicts.
This execution policy avoids the state with tokens simulatenously in place A

and D, which is a possible state. A random number of enabled transitions can
be taken in each interpretation cycle, or updating factors in IUL and PUL can
be atomically applied, representing and atomic occurrence of transitions. This
alternative implementations suppose alternative execution policies that can re-
sult in different executions. To avoid it, beside the specification of the execution
policy, it is required to identify transitions in conflict and the policy to solve
them.

Finally, it is important to point out that the execution model based on
the LEF mechanism makes unnecessary the representation and updating of the



1: procedure Simulate(Lefs, EL, simulationTime)
2: V T ← 0; FUL← {};
3: for all (t′ ∈ EL) do . Fires enabled transitions
4: if (ft′ (M) ≤ 0) then . Checks transition is enabled yet

5: for all (t ∈ IUL(t′)) do
6: ft(M)← ft(M) + UF(t′ → t);
7: if (t = t′andft(M) ≤ 0) then . Avoids race conditions
8: insert-FUL (t, 0, τ(t) + clock);
9: end if
10: end for
11: for all (t ∈ PUL(t′)) do
12: insert-FUL (t,UF(t′ → t), τ(t′) + clock);
13: end for
14: end if
15: end for
16: if (head-FUL.time > clock) then . Update VT
17: VT← head-FUL.time
18: end if
19: while (head-FUL.time = VT) do . Update EL
20: t← head-FUL.pt; ft(M) := ft(M) + head-FUL.UF;
21: if (ft(M) ≤ 0) then insert(EL, t);
22: end if
23: head-FUL← pop(FUL);
24: end while
25: end procedure

Fig. 4: Centralized simulator engine

marking of the PN model. Nevertheless, the construction of the marking of the
PN after the occurrence of a sequence of transitions can be easily done collecting
a log containing the occurrence of transitions each one labelled with the simula-
tion time. From this log of labelled transitions, the occurrence sequence can be
reconstructed and then using the net state equation (an algebraic computation),
for example, compute the reached marking from the initial one.

4 A framework for resource management dynamic load
balancing and in distributed DES Simulations

Distributed simulation of TPNs will be based on many identical simulation en-
gines distributed over the execution platform, and each one devoted to the sim-
ulation of a subnet of the original one. Each subnet is represented in the corre-
sponding simulation engine as a data structure. In [25], K.S. Perumalla points
out the need of micro-kernels specialized in simulation for building distributed
simulations. The idea is to have a micro-kernel that collects the core invariant
portion of distributed DES simulation techniques, and avoids to develop entirely
the systems from scratch. The core must permit traditional implementations
(conservative or optimistic), and the incorporation of newer techniques. We will
call SimBots to our micro-kernels implementing LP.

A simulation engine proposed by Chiola and Ferscha in [6] nmanage sub-
net regions as a subset of places, transitions, and arcs of the original net. This
implies that the interface is defined by a subset of places. Moreover, in [6] conser-
vative and optimistic approaches assume a communication channel for each arc



connecting the corresponding TPN regions. Therefore, a dynamic workload bal-
ancing would require a continuous interface redefinition configured by different
channels, which is a very big problem. The availability of an scalable architec-
ture for large-scale simulations requires and event driven execution model. The
actor model based on asynchronous message passing has been selected for the
design of large scale distributed simulations as unit of concurrency [17]. It is
an event driven model that scale to a large number of actors and removes the
complexity of locking mechanisms. A single immutable interface that consists
in a mailbox that buffers incoming messages, and a pattern based selection of
messages to process them provides the flexibility for configuring different parti-
tions. A distributed simulation based on the LEF mechanism requires a set of
simple simulation engines called SimBot that each one can be considered as an
actor. A SimBot will have a mailbox interface, an execution kernel based on the
LEF mechanisms, and where is possible to implement different services: synchro-
nization strategies, PN interpretations, load balancing redistributing transition
nodes , and self-configuring partition strategies according to the state of com-
putational and network resources.

A SimBots’ system for distributed simulation of TPNs is depicted in Figure
5. Node transitions configure a network that process events triggering updating
factors of adjacent transitions when the guard representing the counter value
equals or less than zero. To distribute the network it is only required to route
messages to the SimBot that contains the corresponding transition nodes. It can
be easily done with a transition service name, or using routing services supported
by actor models such as Akka.

Figure 5 shows in the wall clock time axis how evolves the system. Initially
the Simulator System receives a textual specification of a flat PN, and it is sent
to the PNcompiler to obtain the LEF data structure. Figure 2 shows how an
initial PN specification can be split in subnets. An initial criteria can be as
simple as a avoid to distribute transitions in conflict, which can be obtained by
structural analysis, and to balance the number of transitions in subnets. The
monitoring & load balancing actor deploys the compiled code, and monitors the
state of simulation. It is possible to scale the number of compilers if we have a
large specification, with the only caution of using unique names for transitions.

Once the code is deployed, SimBots can interchange asynchronous messages
with time-stamped updating factors. Each Simbot execute the same strategy,
incorporating events of adjacent SimBots to the interpretation loop. The Mon-
itoring & load balancing actor can recover logs, list of time-stamped triggered
transitions. Joining and ordering events can obtain a global consistent state and
it can monitor the simulation.

The bottom part of the figure shows how the system can perform workload
balancing as the result of a self-configuration of adjacent actors. The compilation
process also incorporates structural information to know adjacent actors, that
is, SimBots that send or receive updating factors. In the load balancing process,
the SimBot must be sycrhronized with adjacent SimBots until the LEF data
structure corresponding to transitions can be moved . The set of transitions
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hold by a SimBot can be split to distribute it between adjacent SimBots, or can
be joined in a SimBot resulting in a inactive one if there is not transitions to
deal.

5 Conclusions and Future Work

A process to fill the gap between high level specification of complex DESs and
the generation of code for scalable and dynamic distributed simulations has been
presented. The process is based on the well known formalism of PNs, and the
paper presents an efficient data based structure representation for the interpre-
tation of PNs. The codification lacks of state representation and makes easy load
balancing between interpreters.

An actor architecture for distributed simulation of PNs has been also pre-
sented. Currently a prototype has been developed in Akka, with a compiler for
simple binary PNs, and a basic SimBot actor able to interpret and transfer LEF
data structures to adjacent SimBots. Future work includes different experimen-
tal work to show the efficient interpretation, and the scalability of the execution
model. The prototype will be the basis for the exploration of new synchroniza-
tion algorithms, self-configuring policies, and the definition of complex partition
criteria considering economical aspect that will allow the development of Simu-
lation as a Service in public and private clouds.
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23. Muro-Medrano, P.R., Bañares, J.A., Villarroel, J.L.: Knowledge representation-
oriented nets for discrete event system applications. IEEE Trans. Systems, Man,
and Cybernetics, Part A 28(2), 183–198 (1998)

24. Nicol, D.M., Mao, W.: Automated parallelization of timed petri-net simulations.
J. Parallel Distrib. Com. 29(1), 60–74 (1995)

25. Perumalla, K.S.: µsik - a micro-kernel for parallel/distributed simulation systems.
In: Workshop on Principles of Advanced and Distributed Simulation (PADS’05).
pp. 59–68 (June 2005)

26. Piedrafita, R., Villarroel, J.L.: Performance evaluation of petri nets centralized
implementation. the execution time controller. Discrete Event Dynamic Systems
21(2), 139–169 (Jun 2011)

27. Schriber, T.J., Brunner, D.T., Smith, J.S.: How discrete-event simulation software
works and why it matters. In: Proceedings of the Winter Simulation Conference.
pp. 3:1–3:15. WSC ’12, Winter Simulation Conference (2012)

28. Shekhar, S., Abdel-Aziz, H., Walker, M., Caglar, F., Gokhale, A., Koutsoukos, X.:
A simulation as a service cloud middleware. Annals of Telecommunications 71(3),
93–108 (2015)

29. Tolk, A.: Engineering Principles of Combat Modeling and Distributed Simulation.
Wiley Publishing, 1st edn. (2012)
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