Skip to main content

Modern Aspects of Complexity Within Formal Languages

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11417))

Abstract

We give a survey on some recent developments and achievements of modern complexity-theoretic investigations of questions in Formal Languages (FL). We will put a certain focus on multivariate complexity analysis, because this seems to be particularly suited for questions concerning typical questions in FL.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the literature, is often required that \(|I'|+\kappa (I')\le f(\kappa (I))\), but this is equivalent to the present requirement, because the parameterization can be computed from \(I'\), i.e., \(\kappa (I')\) is also bounded by a function in \(\kappa (I)\) if \(|I'|\) is.

  2. 2.

    The definitions in [52] are a bit different, but this can be neglected in the current discussion.

  3. 3.

    A new survey is announced to appear in [85].

  4. 4.

    The result was phrased in different terminology back in 1975. Wagner actually proved stronger results in the sense that weights on the operations are permitted.

References

  1. Abboud, A., Backurs, A., Williams, V.V.: If the current clique algorithms are optimal, so is Valiant’s parser. In: Guruswami, V. (ed.) IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS, pp. 98–117. IEEE Computer Society (2015)

    Google Scholar 

  2. Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster alignment of sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 39–51. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_4

    Chapter  Google Scholar 

  3. Abu-Khzam, F.N., Fernau, H., Langston, M.A., Lee-Cultura, S., Stege, U.: A fixed-parameter algorithm for string-to-string correction. Discrete Optim. 8, 41–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alman, J., Williams, V.V.: Limits on all known (and some unknown) approaches to matrix multiplication. In: Thorup, M. (ed.) 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 580–591. IEEE Computer Society (2018)

    Google Scholar 

  5. Alon, N., Shpilka, A., Umans, C.: On sunflowers and matrix multiplication. Comput. Complex. 22(2), 219–243 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Angluin, D.: On the complexity of minimum inference of regular sets. Inf. Control (Now Inf. Comput.) 39, 337–350 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arpe, J., Reischuk, R.: On the complexity of optimal grammar-based compression. In: 2006 Data Compression Conference (DCC), pp. 173–182. IEEE Computer Society (2006)

    Google Scholar 

  8. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). SIAM J. Comput. 47(3), 1087–1097 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Backurs, A., Tzamos, C.: Improving Viterbi is hard: better runtimes imply faster clique algorithms. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, ICML, Proceedings of Machine Learning Research, vol. 70, pp. 311–321. PMLR (2017)

    Google Scholar 

  10. Barbay, J., Pérez-Lantero, P.: Adaptive computation of the swap-insert correction distance. ACM Trans. Algorithms 14(4), 49:1–49:16 (2018)

    Article  MathSciNet  Google Scholar 

  11. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J. Comput. Syst. Sci. 78(1), 198–210 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.): The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday. LNCS, vol. 7370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30891-8

    Book  MATH  Google Scholar 

  13. Bringmann, K., Grandoni, F., Saha, B., Williams, V.V.: Truly sub-cubic algorithms for language edit distance and RNA-folding via fast bounded-difference min-plus product. In: Dinur, I. (ed.) IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, pp. 375–384. IEEE Computer Society (2016)

    Google Scholar 

  14. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string problems and dynamic time warping. In: Guruswami, V. (ed.) IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS, pp. 79–97. IEEE Computer Society (2015)

    Google Scholar 

  15. Bringmann, K., Wellnitz, P.: Clique-based lower bounds for parsing tree-adjoining grammars. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.) 28th Annual Symposium on Combinatorial Pattern Matching, CPM. LIPIcs, vol. 78, pp. 12:1–12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  16. Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algorithmics for NP-hard string problems. EATCS Bull. 114 (2014). http://bulletin.eatcs.org/index.php/beatcs/article/view/310/292

  17. Casel, K., Fernau, H., Gaspers, S., Gras, B., Schmid, M.L.: On the complexity of grammar-based compression over fixed alphabets. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) International Colloquium on Automata, Languages and Programming, ICALP, Leibniz International Proceedings in Informatics (LIPIcs), vol. 55, pp. 122:1–122:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2016)

    Google Scholar 

  18. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

    Google Scholar 

  19. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47, 149–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC, pp. 151–158. ACM (1971)

    Google Scholar 

  22. Cygan, M., et al.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41:1–41:24 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  24. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-0515-9

    Book  MATH  Google Scholar 

  25. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  26. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3), 500–510 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of Closest Substring and related problems. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 262–273. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45841-7_21

    Chapter  Google Scholar 

  28. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity. Eur. J. Combin. 34(3), 541–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fernau, H.: Parallel grammars: a phenomenology. GRAMMARS 6, 25–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fernau, H.: Parameterized Algorithmics: A Graph-Theoretic Approach. Universität Tübingen, Germany, Habilitationsschrift (2005)

    Google Scholar 

  31. Fernau, H.: Parameterized algorithmics for \(d\)-hitting set. Int. J. Comput. Math. 87(14), 3157–3174 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Fernau, H.: A top-down approach to search-trees: improved algorithmics for 3-hitting set. Algorithmica 57, 97–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fernau, H., Heggernes, P., Villanger, Y.: A multi-parameter analysis of hard problems on deterministic finite automata. J. Comput. Syst. Sci. 81(4), 747–765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fernau, H., Krebs, A.: Problems on finite automata and the exponential time hypothesis. Algorithms 10(24), 1–25 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Fernau, H., Manea, F., Mercaş, R., Schmid, M.L.: Pattern matching with variables: fast algorithms and new hardness results. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp. 302–315. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015)

    Google Scholar 

  36. Fernau, H., Meister, D., Schmid, M.L., Stege, U.: Editing with swaps and inserts on binary strings (2014). Manuscript

    Google Scholar 

  37. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Simple picture processing based on finite automata and regular grammars. J. Comput. Syst. Sci. 95, 232–258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and complexity results on jumping finite automata. Theor. Comput. Sci. 679, 31–52 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string morphism problems. Theory Comput. Syst. 59(1), 24–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    Book  MATH  Google Scholar 

  41. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0_21

    Chapter  Google Scholar 

  42. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

    Book  MATH  Google Scholar 

  43. Gawrychowski, P., Straszak, D.: Strong inapproximability of the shortest reset word. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 243–255. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48057-1_19

    Chapter  MATH  Google Scholar 

  44. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control (Now Inf. Comput.) 37, 302–320 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Graham, S.L., Harrison, M.A., Ruzzo, W.L.: An improved context-free recognizer. ACM Trans. Program. Lang. Syst. 2(3), 415–462 (1980)

    Article  MATH  Google Scholar 

  46. Grune, D., Jacobs, C.J.H.: Parsing Techniques - A Practical Guide. Monographs in Computer Science. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-68954-8

    Book  MATH  Google Scholar 

  47. Higuera, C.: Grammatical inference. Learning automata and grammars. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  48. Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. Int. J. Found. Comput. Sci. 22(7), 1533–1548 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inf. Comput. 209(3), 456–470 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  51. Hucke, D., Lohrey, M., Reh, C.P.: The smallest grammar problem revisited. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 35–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46049-9_4

    Chapter  Google Scholar 

  52. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  53. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22(6), 1117–1141 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14846-0

    Book  MATH  Google Scholar 

  55. Kieffer, J.C., Yang, E.: Grammar-based codes: a new class of universal lossless source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium on Foundations of Computer Science, FOCS, pp. 254–266. IEEE Computer Society (1977)

    Google Scholar 

  57. Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math. 52, 233–252 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  58. Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multiplication. J. ACM 49(1), 1–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Lehman, E., Shelat, A.: Approximations algorithms for grammar-based compression. In: Thirteenth Annual Symposium on Discrete Algorithms SODA. ACM Press (2002)

    Google Scholar 

  60. Liao, K., Petri, M., Moffat, A., Wirth, A.: Effective construction of relative lempel-ziv dictionaries. In: Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao, B.Y. (eds.) Proceedings of the 25th International Conference on World Wide Web, WWW, pp. 807–816. ACM (2016)

    Google Scholar 

  61. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. EATCS Bull. 105, 41–72 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  64. Meister, D.: Using swaps and deletes to make strings match. Theor. Comput. Sci. 562, 606–620 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. Andres Montoya, J., Nolasco, C.: On the synchronization of planar automata. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp. 93–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77313-1_7

    Chapter  MATH  Google Scholar 

  66. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment. Math. Univ. Carolinae 26(2), 415–419 (1985)

    MathSciNet  MATH  Google Scholar 

  67. Nevill-Manning, C.G.: Inferring sequential structure. Ph.D. thesis, University of Waikato, New Zealand (1996)

    Google Scholar 

  68. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences: a linear-time algorithm. J. Artif. Intell. Res. 7, 67–82 (1997)

    Article  MATH  Google Scholar 

  69. Nevill-Manning, C.G., Witten, I.H.: On-line and off-line heuristics for inferring hierarchies of repetitions in sequences. Proc. IEEE 88, 1745–1755 (2000)

    Article  Google Scholar 

  70. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  71. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Marion, J.Y., Schwentick, T. (eds.) 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010), Leibniz International Proceedings in Informatics (LIPIcs), vol. 5, pp. 17–32. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2010)

    Google Scholar 

  72. Okhotin, A.: Parsing by matrix multiplication generalized to Boolean grammars. Theor. Comput. Sci. 516, 101–120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  73. de Oliveira Oliveira, M., Wehar, M.: Intersection non-emptiness and hardness within polynomial time. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 282–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8_23

    Chapter  Google Scholar 

  74. Pinhas, T., Zakov, S., Tsur, D., Ziv-Ukelson, M.: Efficient edit distance with duplications and contractions. Algorithms Mole. Biol. 8, 27 (2013)

    Article  MATH  Google Scholar 

  75. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approximated within any polynomial. J. ACM 40, 95–142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  76. Rajasekaran, S.: Tree-adjoining language parsing in \(O(n^6)\) time. SIAM J. Comput. 25(4), 862–873 (1996)

    MathSciNet  MATH  Google Scholar 

  77. Rajasekaran, S., Yooseph, S.: TAL recognition in \(O(M(n^2))\) time. J. Comput. Syst. Sci. 56(1), 83–89 (1998)

    MathSciNet  MATH  Google Scholar 

  78. Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. Inf. Comput. 239, 87–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  79. Rozenberg, G., Salomaa, A.K.: The Mathematical Theory of L Systems. Academic Press, Cambridge (1980)

    MATH  Google Scholar 

  80. Rytter, W.: Context-free recognition via shortest paths computation: a version of Valiant’s algorithm. Theor. Comput. Sci. 143(2), 343–352 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  81. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theor. Comput. Sci. 302, 211–222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  82. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/10.1007/11498490_2

    Chapter  Google Scholar 

  83. Satta, G.: Tree-adjoining grammar parsing and Boolean matrix multiplication. J. Comput. Linguist. 20(2), 173–191 (1994)

    MathSciNet  Google Scholar 

  84. Shannon, C.E.: A universal Turing machine with two internal states. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, Annals of Mathematics Studies, vol. 34, pp. 157–165. Princeton University Press (1956)

    Google Scholar 

  85. Sirakov, B., de Souza, P.N., Viana, M. (eds.): Proceedings of the International Congress of Mathematicians 2018 (ICM 2018). World Scientific (2019)

    Google Scholar 

  86. Siyari, P., Gallé, M.: The generalized smallest grammar problem. In: Verwer, S., van Zaanen, M., Smetsers, R. (eds.) Proceedings of the 13th International Conference on Grammatical Inference, ICGI 2016, JMLR Workshop and Conference Proceedings, vol. 57, pp. 79–92. JMLR.org (2017)

    Google Scholar 

  87. Stockmeyer, L.J.: The complexity of decision problems in automata theory and logic. Ph.D. thesis, Massachusetts Institute of Technology, Department of Electrical Engineering (1974)

    Google Scholar 

  88. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: preliminary report. In: Aho, A.V., et al. (eds.) Proceedings of the 5th Annual ACM Symposium on Theory of Computing, STOC, pp. 1–9. ACM (1973)

    Google Scholar 

  89. Storer, J.A.: NP-completeness results concerning data compression. Technical report 234, Department of Electrical Engineering and Computer Science, Princeton University, USA, November 1977

    Google Scholar 

  90. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM 29(4), 928–951 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  91. Swernofsky, J., Wehar, M.: On the complexity of intersecting regular, context-free, and tree languages. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 414–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_33

    Chapter  MATH  Google Scholar 

  92. Szykuła, M.: Improving the upper bound on the length of the shortest reset word. In: Niedermeier, R., Vallée, B. (eds.) 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 96, pp. 56:1–56:13. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

  93. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8, 85–89 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  94. Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput. Syst. Sci. 10(2), 308–315 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  95. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4_4

    Chapter  Google Scholar 

  96. Vorel, V., Roman, A.: Parameterized complexity of synchronization and road coloring. Discrete Math. Theor. Comput. Sci. 17, 283–306 (2015)

    MathSciNet  MATH  Google Scholar 

  97. Wagner, R.A.: On the complexity of the extended string-to-string correction problem. In: Proceedings of seventh Annual ACM Symposium on Theory of Computing, STOC 1975, pp. 218–223. ACM Press (1975)

    Google Scholar 

  98. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  99. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and related problems. Ph.D. thesis, Department of Computer and Information Science, Linköpings universitet, Sweden (2007)

    Google Scholar 

  100. Todd Wareham, H.: The parameterized complexity of intersection and composition operations on sets of finite-state automata. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44674-5_26

    Chapter  MATH  Google Scholar 

  101. Watt, N.: String to string correction kernelization. Master’s thesis, University of Victoria, Canada (2013)

    Google Scholar 

  102. Wehar, M.: Hardness results for intersection non-emptiness. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 354–362. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_30

    Chapter  Google Scholar 

  103. Welch, T.A.: A technique for high-performance data compression. IEEE Comput. 17, 8–19 (1984)

    Article  Google Scholar 

  104. Williams, V.V.: Hardness of easy problems: basing hardness on popular conjectures such as the strong exponential time hypothesis (invited talk). In: Husfeldt, T., Kanj, I.A. (eds.) 10th International Symposium on Parameterized and Exact Computation, IPEC, LIPIcs, vol. 43, pp. 17–29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

    Google Scholar 

  105. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Karloff, H.J., Pitassi, T. (eds.) Proceedings of the 44th Symposium on Theory of Computing Conference, STOC, pp. 887–898. ACM (2012)

    Google Scholar 

  106. Wong, C.K., Chandra, A.K.: Bounds for the string editing problem. J. ACM 23(1), 13–16 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  107. Zakov, S., Tsur, D., Ziv-Ukelson, M.: Reducing the worst case running times of a family of RNA and CFG problems, using Valiant’s approach. Algorithms Mole. Biol. 6, 20 (2011)

    Article  Google Scholar 

  108. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24, 530–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to many people giving feedback to the ideas presented in this paper. In particular, Anne-Sophie Himmel, Ulrike Stege, and Petra Wolf commented on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Fernau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernau, H. (2019). Modern Aspects of Complexity Within Formal Languages. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2019. Lecture Notes in Computer Science(), vol 11417. Springer, Cham. https://doi.org/10.1007/978-3-030-13435-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13435-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13434-1

  • Online ISBN: 978-3-030-13435-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics