
ar
X

iv
:1

61
1.

01
69

6v
6

 [
cs

.L
O

]
 3

1
O

ct
 2

01
8

Closure and Nonclosure Properties of the

Compressible and Rankable Sets

Jackson Abascal1, Lane A. Hemaspaandra2, Shir Maimon1,3, and

Daniel Rubery
Department of Computer Science, University of Rochester, Rochester, NY 14627, USA

November 5, 2016; revised October 30, 2018

Abstract

The rankable and compressible sets have been studied for more than a quarter of a century,
ever since Allender [1] and Goldberg and Sipser [6] introduced the formal study of polynomial-time
ranking. Yet even after all that time, whether the rankable and compressible sets are closed under
the most important boolean and other operations remains essentially unexplored. The present
paper studies these questions for both polynomial-time and recursion-theoretic compression and
ranking, and for almost every case arrives at a Closed, a Not-Closed, or a Closed-Iff-Well-Known-
Complexity-Classes-Collapse result for the given operation. Even though compression and rank-
ing classes are capturing something quite natural about the structure of sets, it turns out that
they are quite fragile with respect to closure properties, and many fail to possess even the most
basic of closure properties. For example, we show that with respect to the join (aka disjoint
union) operation: the P-rankable sets are not closed, whether the semistrongly P-rankable sets
are closed is closely linked to whether P = UP ∩ coUP, and the strongly P-rankable sets are
closed.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography; Theory of computation → Complexity classes; Theory of computation → Com-
putability; Information systems → Data compression

Keywords and phrases complexity theory, closure properties, compression, ranking, computabil-
ity

1 Introduction

Loosely put, a compression function f for a set A is a function over the domain Σ∗ such
that (a) f(A) = Σ∗ and (b) (∀a, b ∈ A : a 6= b)[f(a) 6= f(b)]. That is, f puts A in 1-to-1
correspondence with Σ∗. This is sometimes described as providing a minimal perfect hash
function for A: It is perfect since there are no collisions (among elements of A), and it is
minimal since not a single element of the codomain is missed. Note that the above does
not put any constraints on what strings the elements of A are mapped to, or even about
whether the compression function needs to be defined on such strings. A ranking function
is similar, yet stronger, in that a ranking function sends the ith string in A to the integer i;
it respects the ordering of the members of A.

The study of ranking was started by Allender [1] and Goldberg and Sipser [6], and has
been pursued in many papers since, especially in the early 1990s, e.g., [9, 14, 5, 2]. The
study of ranking led to the study of compression, which was started—in its current form,

1 Supported in part by a CRA-W Collaborative Research Experiences for Undergraduates (CREU) grant.
2 This work was done in part while on a sabbatical stay at ETH Zürich and the University of Düsseldorf.
3 Current affiliation: Department of Computer Science, Cornell University

http://arxiv.org/abs/1611.01696v6

2 Closure and Nonclosure Properties of the Compressible and Rankable Sets

though already foreshadowed in a notion of [6]—by Goldsmith, Hemachandra, and Kunen [7]
(see also [8]). The abovementioned work focused on polynomial-time or logarithmic-space
ranking or compression functions. More recently, both compression and ranking have also
been studied in the recursion-theoretic context ([11], and see the discussion therein for
precursors in classic recursive function theory), in particular for both the case of (total)
recursive compression/ranking functions (which of course must be defined on all inputs in
Σ∗) and the case of partial-recursive compression/ranking functions (i.e., functions that on
some or all elements of the complement of the set being compressed/ranked are allowed to
be undefined).

In the present paper, we continue the study of both complexity-theoretic and recursion-
theoretic compression and ranking functions. In particular, the earlier papers often viewed
the compressible sets or the rankable sets as a class. We take that very much to heart,
and seek to learn whether these classes do, or do not, possess key closure properties. Our
main contributions can be seen in Table 1, where we obtain closure and nonclosure results
for many previously studied variations of compressible and rankable sets under boolean
operations (Section 4). We also study the closure of these sets under additional operations,
such as the join, aka disjoint union (Section 5). And we introduce the notion of compression
onto a set and characterize the robustness of compression under this notion. In particular,
by a finite-injury priority argument with some interesting features we show that there exist
RE sets that each compress to the other, yet that nonetheless are not recursively isomorphic
(Section 3).

2 Definitions

Throughout this paper, “P” when used in a function context (e.g., the P-rankable sets) will
denote the class of total, polynomial-time computable functions from Σ∗ to Σ∗. Additionally,
throughout this paper, Σ = {0, 1}. FREC will denote the class of total, recursive functions

Class ∩ ∪ complement

strong-P-rankable P = P#P (Th. 4.2) P = P#P (Th. 4.2) Yes (Prop. 4.3)

semistrong-P-rankable P = P#P (Th. 4.2) P = P#P (Th. 4.2) ≈ P = UP ∩ coUP (Th. 4.6, Cor 4.9)

P-rankable, P-compressible′,

FREC-rankable, FREC-com-

pressible, FPR-rankable, and

FPR-compressible

No (Th. 4.10) No (Th. 4.11) No (Th. 4.12)

strong-P-rankable∁ No (Th. 4.13) No (Th. 4.13) Yes (Prop. 4.3)

semistrong-P-rankable∁ No (Th. 4.13) No (Th. 4.13) ≈ P = UP ∩ coUP (Th. 4.6, Cor 4.9)

P-rankable∁, P-compressible∁,

FREC-rankable∁, FREC-com-

pressible∁, FPR-rankable∁, and

FPR-compressible∁

No (Th. 4.13) No (Th. 4.13) No (Th. 4.12)

Table 1 Overview of results for closure of these classes under boolean operations. If an entry

does not contain “No” or “Yes” then the class is closed under the operation if and only if the entry

holds. A special case is semistrong-P-rankable and semistrong-P-rankable∁, in which we deliberately

use the ≈ symbol to indicate that the implication is true in one direction and in the other direction

currently is known to be true only for a broad subclass of these sets. Specifically, if P = UP ∩ coUP

then the complements of all “nongappy” semistrong-P-rankable sets are themselves semistrong-

P-rankable.

J. Abascal, L. A. Hemaspaandra, S. Maimon, and D. Rubery 3

from Σ∗ to Σ∗. FPR will denote the class of partial recursive functions from Σ∗ to Σ∗. ǫ

will denote the empty string. We define the function shift(x, n) for n ∈ Z. If n ≥ 0, then
shift(x, n) is the string n spots after x in lexicographical order, e.g., shift(ǫ, 4) = 01. For
n > 0, define shift(x, −n) as the string n spots before x in lexicographical order, or ǫ if no
such string exists. We define the symmetric difference A △ B = (A − B) ∪ (B − A). The
symbol N will denote the natural numbers {0, 1, 2, 3, . . .}.

We now define the notions of compressible and rankable sets.

◮ Definition 2.1 (Compressible sets [11]).

1. Given a set A ⊆ Σ∗, a (possibly partial) function f is a compression function for A

exactly if
a. domain(f) ⊇ A,
b. f(A) = Σ∗, and
c. for all a and b in A, if a 6= b then f(a) 6= f(b).

2. Let F be any class of (possibly partial) functions mapping from Σ∗ to Σ∗. A set A is
F-compressible if some f ∈ F is a compression function for A.

3. For each F as above, F -compressible = {A | A is F -compressible} and
F -compressible′ = F -compressible ∪ {A ⊆ Σ∗ | A is a finite set}.

4. For each F as above and each C ⊆ 2Σ∗

, we say that C is F-compressible if all infinite
sets in C are F -compressible.

Note that a compression function f for A can have any behavior on elements of A and
need not even be defined. Finite sets cannot have compression functions as they do not have
enough elements to be mapped onto Σ∗. Thus part 4 of Definition 2 defines a class to be
F -compressible if and only if its infinite sets are F -compressible.

Ranking can be informally thought of as a sibling of compression that preserves lexico-
graphical order within the set. We consider three classes of rankable functions that differ
in how they are allowed to behave on the complement of the set they rank. Although ever
since the paper of Hemachandra and Rudich [9], which introduced two of the three types,
there have been those three types of ranking classes, different papers have used different
(and sometimes conflicting) terminology for these types. Here, we use the (without modify-
ing adjective) terms “ranking function” and “rankable” in the same way as Hemaspaandra
and Rubery [11] do, for the least restrictive form of ranking (the one that can even “lie”
on the complement). That is the form of ranking that is most naturally analogous with
compression, and so it is natural that both terms should lack a modifying adjective. For the
most restrictive form of ranking, which even for strings x in the complement of the set A

being ranked must determine the number of strings up to x that are in A, like Hemachandra
and Rudich [9] we use the terms “strong ranking function” and “strong(ly) rankable.” And
for the version of ranking that falls between those two, since for strings in the complement
it need only detect that they are in the complement, we use the terms “semistrong ranking
function” and “semistrong(ly) rankable.”

◮ Definition 2.2 ([1, 6]). rankA(y) = ‖{z | z ≤ y ∧ z ∈ A}‖.

◮ Definition 2.3 (Rankable sets, [1, 6], see also [11]).

1. Given a set A ⊆ Σ∗, a (possibly partial) function f is a ranking function for A exactly if
a. domain(f) ⊇ A and
b. if x ∈ A, then f(x) = rankA(x).

2. Let F be any class of (possibly partial) functions mapping from Σ∗ to Σ∗. A set A is
F-rankable if some f ∈ F is a ranking function for A.

4 Closure and Nonclosure Properties of the Compressible and Rankable Sets

3. For each F as above, F -rankable= {A | A is F -rankable}.
4. For each F as above and each C ⊆ 2Σ∗

, C is F-rankable if all sets in C are F -rankable.

◮ Definition 2.4 (Semistrongly rankable sets, [9], see also [11]).

1. Given a set A ⊆ Σ∗, a function f is a semistrong ranking function for A exactly if
a. domain(f) = Σ∗,
b. if x ∈ A, then f(x) = rankA(x), and
c. if x /∈ A, f(x) indicates “not in set” (e.g., via the machine computing f halting in a

special state; we still view this as a case where x belongs to domain(f)).
2. Let F be any class of functions mapping from Σ∗ to Σ∗. A set A is semistrong-F-rankable

if some f ∈ F is a semistrong ranking function for A.
3. For each F as above, semistrong-F -rankable = {A | A is semistrong-F -rankable}.
4. For each F as above and each C ⊆ 2Σ∗

, we say that C is semistrong-F-rankable if all sets
in C are semistrong-F -rankable.

◮ Definition 2.5 (Strongly rankable sets, [9], see also [11]).

1. Given a set A ⊆ Σ∗, a function f is a strong ranking function for A exactly if
a. domain(f) = Σ∗ and
b. f(x) = rankA(x).

2. Let F be any class of functions mapping from Σ∗ to Σ∗. A set A is strong-F-rankable

exactly if (∃f ∈ F)[f is a strong ranking function for A].
3. For each F as above, strong-F -rankable = {A | A is strong-F -rankable}.
4. For each F as above and each C ⊆ 2Σ∗

, we say that C is strong-F-rankable if all sets in
C are strong-F -rankable.

For almost any natural class of functions, F , we will have that F -rankable is contained in
F -compressible′. In particular, P, FPR, and FREC each have this property. If f is a ranking
function for A (in the sense of part 1 of Definition 2.3), for our same-class compression
function for A we can map x ∈ Σ∗ to the f(x)-th string in Σ∗ (where we consider ǫ to be
the first string in Σ∗) if f(x) > 0, and if f(x) = 0 what we map to is irrelevant so map to
any particular fixed string (for concreteness, ǫ).

For each class C ⊆ 2Σ∗

, C∁ will denote the complement of C, i.e., 2Σ∗

− C. For example,
P-rankable∁ is the class of non-P-rankable sets.

The class semistrong-P-rankable is a subset of P (indeed, a strict subset unless P =
P#P [9]), but there exist undecidable sets that are P-rankable. Clearly, the class of
semistrong-REC-rankable sets equals the class of strong-REC-rankable sets.

3 Compression onto B: Robustness with Respect to Target Set

A compression function for a set A is 1-to-1 and onto Σ∗ when the function’s domain is
restricted to A. It is natural to wonder what changes when we switch target sets from Σ∗

to some other set B ⊆ Σ∗. We now define this notion. In our definition, we do allow strings
in A to be mapped to B or to B, or even, for the case of FPR maps, to be undefined. In
particular, this definition does not require that f(Σ∗) = B. Recall from Section 1 that,
throughout this paper, Σ = {0, 1}.

◮ Definition 3.1 (Compressible to B).

1. Given sets A ⊆ Σ∗ and B ⊆ Σ∗, a (possibly partial) function f is a compression function

for A to B exactly if
a. domain(f) ⊇ A,

J. Abascal, L. A. Hemaspaandra, S. Maimon, and D. Rubery 5

b. f(A) = B, and
c. for all a and b in A, if a 6= b then f(a) 6= f(b).

2. Let F be any class of (possibly partial) functions mapping from Σ∗ to Σ∗. A set A is
F-compressible to B if some f ∈ F is a compression function for A to B.

The classes F of interest to us will be FREC and FPR. Clearly, compression is simply
the B = Σ∗ case of this definition, e.g., a function f is a compression function for A if and
only if f is a compression function for A to Σ∗, and set A is F -compressible if and only if
A is F -compressible to Σ∗.

A natural first question to ask is whether compression to B is a new notion, or whether
it coincides with our existing notion of compression to Σ∗, at least for sets B from common
classes such as REC and RE. The following result shows that for REC and RE this new
notion does coincide with our existing one.

◮ Theorem 3.2. Let A and B be infinite sets.

1. If B ∈ REC, then A is FREC-compressible to B if and only if A is FREC-compressible to

Σ∗.

2. If B ∈ RE, then A is FPR-compressible to B if and only if A is FPR-compressible to Σ∗.

Proof. We first prove part 1, beginning with the “if” direction.
Suppose A is FREC-compressible to Σ∗ by a recursive function f , and suppose B is

recursive and infinite. Let f ′(x) output the element y ∈ B such that rankB(y) = f(x).
Then f ′ is recursive, and A is FREC-compressible to B by f ′.

For the “only if” direction, let B be an infinite recursive set. Suppose that A is
FREC-compressible to B by a recursive function f . Let f ′(x) = ǫ if f(x) is not in B.
Otherwise, let f ′(x) = rankB(f(x)). Then f ′ is recursive, and A is FREC-compressible to
Σ∗ by f ′.

Let us turn to part 2 of the theorem. Again, we begin with the “if” direction. Let B be
an infinite RE set, and let E enumerate the elements of B without repetitions. Suppose A

is FPR-compressible to Σ∗ by a partial recursive function f . Then f ′ does the following on
input x.
1. Simulate f(x). This may run forever if x 6∈ domain(f).
2. If f(x) outputs a value, simulate E until it enumerates f(x) strings.
3. Output the f(x)-th string enumerated by E.

The function f ′ is partial recursive, and A is FPR-compressible to B via f ′.
For the “only if” direction, let B be infinite and RE and let E be an enumerator for B.

Suppose A is FPR-compressible to B via a partial recursive function f . On input x, our f ′

will work as follows.
1. Simulate f(x).
2. If f(x) outputs a value, run E until it enumerates f(x). This step may run forever if

f(x) 6∈ B.
3. Suppose f(x) is the lth string output by E. Then output the lth string in Σ∗.

f ′ is partial recursive, and A is FPR-compressible to Σ∗ by f ′. ◭

Theorem 3.2 covers the two most natural pairings of set classes with function classes:
recursive sets B with FREC compression, and RE sets B with FPR compression. What about
pairing recursive sets under FPR compression, or RE sets under recursive compression? We
note as the following theorem that one and a half of the analogous statements hold, but the
remaining direction fails.

6 Closure and Nonclosure Properties of the Compressible and Rankable Sets

◮ Theorem 3.3. 1. Let A and B be infinite sets and suppose that B ∈ REC. Then A is

FPR-compressible to B if and only if A is FPR-compressible to Σ∗.

2. Let A and B be infinite sets with B ∈ RE. If A is FPR-compressible to Σ∗, then A is

FPR-compressible to B. In fact, we may even require that the compression function for

A to B satisfies f(Σ∗) = B.

3. There are infinite sets A and B with B ∈ RE such that A is FREC-compressible to B but

A is not FREC-compressible to Σ∗.

Proof. The first part follows immediately from Theorem 3.2, part 2. The second part
follows as a corollary to the proof of Theorem 3.2, part 2. In particular, the proof of the
“⇐” direction proves the second part, since it is clear that if f is a recursive function the
f ′ defined there is also recursive.

The third part follows from [11] in which it is shown that any set in RE − REC is
not FREC-compressible to Σ∗. Thus if we let A = B be any set in RE − REC, then A
is FREC-compressible to B by the function f(x) = x but B is not FREC-compressible to
Σ∗. ◭

Another interesting question is how recursive compressibility to B is, or is not, linked to
recursive isomorphism. Recall two sets A and B are recursively isomorphic if there exists
a recursive bijection f : Σ∗ → Σ∗ with f(A) = B. Although recursive isomorphism of sets
implies mutual compressibility to each other, we prove via a finite-injury priority argument
that the converse does not hold (even when restricted to the RE sets). The argument has an
interesting graph-theoretic flavor, and involves queuing infinitely many strings to be added
to a set at once.

◮ Theorem 3.4. If A ≡iso B, then A is FREC-compressible to B and B is FREC-compressible

to A.

◮ Theorem 3.5. There exist RE sets A and B such that A is FREC-compressible to B and

B is FREC-compressible to A, yet A 6≡iso B.

Proof of Theorem 3.4. Now A is FREC-compressible to B by simply letting our FREC-
compression function be the recursive isomorphism function f . Since each recursive isomor-
phism has a recursive inverse, B is FREC-compressible to A by letting our FREC-compression
function be the inverse of f . ◭

Proof of Theorem 3.5. Before defining A and B, we will define a function f which will
serve as both a compression function from A to B and a compression function from B to
A. First, fix a recursive isomorphism between Σ∗ and {〈t, j, k〉 | t ∈ {0, 1, 2, 3} ∧ j, k ∈ N}.
Now we will define f as follows. For each j, k ∈ N, let f(〈3, j, k〉) = 〈3, j + 1, k〉. For each
j, k ∈ N, j > 0, and t ∈ {0, 1, 2}, let f(〈t, j, k〉) = 〈t, j − 1, k〉. Finally, for each k ∈ N, let
f(〈0, 0, k〉) = 〈3, 0, k〉, f(〈1, 0, k〉) = 〈0, 0, k〉, and f(〈2, 0, k〉) = 〈3, 0, k〉. Let ℓ : Σ∗ → {0, 1}

be the unique function such that ℓ(〈0, 0, k〉) = 0 for all k ∈ N and ℓ(f(x)) = 1 − ℓ(x). Let
Df be the directed graph with edges (x, f(x)). Note that ℓ is a 2-coloring of Df if we treat
the edges as being undirected. See Figure 1.

Call a set C a path set if for all x ∈ C, f(x) ∈ C and there is exactly one y ∈ C such
that f(y) = x. Suppose C is a path set. Let Ci = {x ∈ C | ℓ(x) = i} for i ∈ {0, 1}. By
the assumed property of C, we have C0 and C1 are FREC-compressible to each other by
f . Furthermore, if C is RE then so are C0 and C1 since Ci = C ∩ {x | ℓ(x) = i} is the
intersection of an RE set with a recursive set. If we provide an enumerator for a path set C

such that C0 6≡iso C1, we may let A = C0 and B = C1 and be done.

J. Abascal, L. A. Hemaspaandra, S. Maimon, and D. Rubery 7

Our enumerator for C proceeds in two interleaved types of stages: printing
stages Pi and evaluation stages Ei. More formally, we proceed in stages la-
beled Ei and Pi for i ≥ 1, interleaved as E1,P1,E2,P2,. . . ,En,Pn,. . . when run-
ning. We also maintain a set Q of elements of the form 〈t, k〉, where t ∈ {0, 1, 2}

and k ∈ N. This set Q will only ever be added to as the procedure runs.

...

〈3, 2, k〉

〈3, 1, k〉

〈3, 0, k〉

〈0, 0, k〉

〈0, 1, k〉

〈0, 2, k〉

...

〈1, 0, k〉

〈1, 1, k〉

...

〈2, 0, k〉

〈2, 1, k〉

〈2, 2, k〉

...

Figure 1 A diagram of Df ,

for fixed k.

In the printing stage Pi, we do the following for every 〈t, k〉

in Q. Enumerate 〈3, j, k〉 and 〈t, j, k〉 for all j ≤ i. If t = 1,
additionally enumerate 〈0, 0, k〉. Adding an element 〈t, k〉 to
Q in some evaluation stage Ei is essentially adding an infinite
path of nodes in Df to C.

In addition to Q, we also maintain an integer b and a set
R of elements 〈n, k〉 where n, k ∈ N. If 〈n, k〉 ∈ R after stage
i, it signifies that we have not yet satisfied the condition that
ϕn, the nth partial recursive function, is not an isomorphism
function between C0 and C1. In stage Ei we perform the
following. Add 〈i, b〉 to R. Increment b by one. For each
〈n, k〉 ∈ R, run ϕn, the nth partial recursive function, on
〈0, 0, k〉 for i steps. If none of these machines halt in their
allotted time, end the stage. Otherwise, let ni be the smallest
number such that ϕni

produced an output wi = 〈xi, yi, zi〉 on
its respective input 〈0, 0, ki〉. We now break into cases:
1. If ℓ(wi) = 0 add 〈0, ki〉 to Q.
2. If zi 6= ki and ℓ(wi) = 1 and as it stands wi would not be

printed eventually if there were only type P stages from
now on, add 〈0, ki, 〉 to Q.

3. If zi 6= ki and ℓ(wi) = 1 and as it stands wi would be
printed eventually if there were only type P stages from
now on, do nothing.

4. If zi = ki and ℓ(wi) = 1 and xi = 0, add 〈1, ki〉 to Q.
5. If zi = ki and ℓ(wi) = 1 and either xi = 1 or xi = 2, add

〈0, ki〉 to Q.
6. If zi = ki and ℓ(wi) = 1 and xi = 3, add 〈2, ki〉 to Q.
Set b = max(ki, zi) + 1. Remove all pairs 〈n, k〉 with n ≥ ni from R. Then for each n from
ni + 1 to i, first add 〈n, b〉 and subsequently increment b by 1.

We will first prove that C is a path set. If x ∈ C, then it is printed in some printing
stage Pi. By tracing the definition of f and the procedure for printing stages, one can verify
that both f(x) and exactly one y such that f(y) = x will be printed in stage Pj for j ≥ i.
This string y will be the only one ever printed, since no two elements with the same second
coordinate will ever be added to Q, as every element added to Q has the current state of b

as its second coordinate, and b only ever strictly increases between additions to Q.
Let Fn be the condition that ϕn fails to be a recursive isomorphism of C0 onto C1. Fix

n. Say during Ei we have ni = n. In cases 1, 2, 4, and 5, we force ϕn to map 〈0, 0, ki〉 ∈ C0

to something out of C1. In cases 3 and 6, we force ϕn to map 〈0, 0, ki〉 /∈ C0 to something
in C1. Thus whenever at stage i we have ni = n, condition Fn becomes satisfied, though
perhaps not permanently. Specifically, in case 2, w could be printed later to satisfy some
other Fm and in doing so “injure” Fn. However, note that during Ei the variable b is set
to max(ki, zi), thus Fn can only be injured when satisfying conditions Fm for m < n. Pairs

8 Closure and Nonclosure Properties of the Compressible and Rankable Sets

with first coordinate n will only ever be added to R when after satisfying some such Fm, in
addition to once initially, so in total only a finite number of times. If ϕn always halts, Fn

will eventually be satisfied and never injured again.
This proves that C is a path set such that C0 6≡iso C1. Thus C0 and C1 are RE sets that

are FREC-compressible to each other by f , but are not recursively isomorphic. ◭

For those interested in the issue of isomorphism in the context of complexity-theoretic
functions, which was not the focus above, we mention that: Hemaspaandra, Zaki, and Zi-
mand [13] prove that the P-rankable sets are not closed under ≡p

iso
; Goldsmith and Homer [8]

prove that the strong-P-rankable sets are closed under ≡p
iso

if and only if P = P#P; and
[13] notes that the semistrong-P-rankable sets similarly are closed under ≡p

iso
if and only if

P = P#P.

4 Closures and Nonclosures under Boolean Operations

We now move on to a main focus of this paper, the closure properties of the compressible
and the rankable sets. We explore these properties both in the complexity-theoretic and the
recursion-theoretic domains. Table 1 on page 2 summarizes our findings.

◮ Lemma 4.1. Let A and B be strong-P-rankable. Then A ∪ B is strong-P-rankable if and

only if A ∩ B is.

Proof. The identity rankA∩B(x) + rankA∪B = rankA(x) + rankB(x) allows us to compute
either of rankA∩B(x) or rankA∪B(x) from the other. ◭

◮ Theorem 4.2. The following conditions are equivalent:

1. the classes strong-P-rankable and semistrong-P-rankable are closed under intersection,

2. the classes strong-P-rankable and semistrong-P-rankable are closed under union, and

3. P = P#P.

Proof. It was proven in [9] by Hemachandra and Rudich that P = P#P implies P =
strong-P-rankable = semistrong-P-rankable. Since P is closed under intersection and union,
this shows that 3 implies 1 and 2. To show, in light of Lemma 4.1, that either 1 or 2 would
imply 3, we will construct two strong-P-rankable sets whose intersection is not P-rankable
unless P = P#P.

Let A1 be the set of x1y1 such that |x| = |y|, x encodes a boolean formula, and y

(padded with 0s so that it has length |x|) encodes a satisfying assignment for the formula
x. Let A0 be the set of x1y0 such that |x| = |y|, and x1y1 /∈ A1. Let A2 be the set of
strings x0|x|+11. Let A = A0 ∪ A1 ∪ A2. For every x, and every y such that |x| = |y|,
exactly one of x1y0 and x1y1 is in A. Thus, for any x, we can find rankA0∪A1

(x) in
polynomial time. Clearly A2 is strong-P-rankable. Since A0 ∪ A1 and A2 are disjoint,
rankA0∪A1∪A2

(x) = rankA0∪A1
(x) + rankA2

(x), so A is strong-P-rankable.
Let B = Σ∗1. Then A ∩ B = A1 ∪ A2 is the set of x1y1 such that y encodes a satis-

fying assignment for x, along with all strings x0|x|+11. If A1 ∪ A2 were P-rankable, then
we could count satisfying assignments of a formula x in polynomial time by computing
rankA∩B(shift(x, 1)0| shift(x,1)|+11)− rankA∩B(x0|x|+11)−1. Thus #SAT is polynomial-time
computable and so P = P#P. ◭

◮ Proposition 4.3. strong-P-rankable is closed under complementation.

Proof. The identity rankA(x) + rankA(x) = rankΣ∗(x) allows us to compute either of
rankA(x) or rankA(x) from the other. ◭

J. Abascal, L. A. Hemaspaandra, S. Maimon, and D. Rubery 9

◮ Corollary 4.4. The class strong-P-rankable∁ is also closed under complementation.

◮ Lemma 4.5. The class semistrong-P-rankable is closed under complementation if and only

if semistrong-P-rankable = strong-P-rankable.

Proof. The “if” direction follows directly from Proposition 4.3. For the “only if” direction,
let A be a semistrong-P-rankable set with ranking function rA, and suppose A is semistrong-
P-rankable with semistrong ranking function rA. Then rankA(x) = rA(x) if x ∈ A, and
equals rankΣ∗ (x) − rA(x) otherwise. The function rA decides membership in A, so we can
compute rankA(x) in polynomial time. ◭

◮ Theorem 4.6. If semistrong-P-rankable is closed under complementation, then P =
UP ∩ coUP.

Proof. Suppose semistrong-P-rankable is closed under complementation. Let A be in
UP ∩ coUP. Then there exists a UP machine U recognizing A, and a UP machine Û recog-
nizing A. If x ∈ A, let f(x) be the unique accepting path for x in U . Otherwise, let f(x)
be the unique accepting path for x in Û . Choose a polynomial p such that, without loss
of generality, p(x) is monotonically increasing and |f(x)| = p(|x|) (we may pad accepting
paths with 0s to make this true).

The language B = {xf(x)1 | x ∈ Σ∗} ∪ {x0p(|x|)+1 | x ∈ Σ∗} is semistrong-P-rankable
since rankB(x0p(|x|)+1) = 2rankΣ∗ (x) − 1 and rankB(xf(x)1) = 2rankΣ∗(x). Since
semistrong-P-rankable is closed under complementation, and B is semistrong-P-rankable,
B is also strong-P-rankable by Lemma 4.5. Let x be a string, and let y = shift(x, 1). We
can binary search on the value of rankB in the range from x0p(|x|)+1 to y0p(|y|)+1 to find the
first value xz where |z| = p(|x|) + 1 and rankB(xz) = 2rankΣ∗ (x). See that f(x) must equal
z. We then simulate U on the path z and Û on the path z. Now z must be an accepting
path for one of these machines, so either U accepts and x ∈ A, or Û accepts and x /∈ A. ◭

◮ Definition 4.7. A set is nongappy if there exists a polynomial p such that, for each n ∈ N,
there is some element y ∈ A such that n ≤ |y| ≤ p(n).

◮ Theorem 4.8. If P = UP ∩ coUP then each nongappy semistrong-P-rankable set is strong-

P-rankable.

Proof. Let A be a nongappy semistrong-P-rankable set, and let p be a polynomial such
that, for each n ∈ N, there is y in A such that n ≤ |y| ≤ p(y). Let r be a polynomial-
time semistrong ranking function for A. The coming string comparisons of course will be
lexicographical. Let L be the set of 〈x, b〉 such that there exists at least one string in A that
is less than or equal to x and b a prefix of the greatest string in A that is lexicographically
less than or equal to x. L is in UP ∩ coUP by the following procedure. Let x0 be the
lexicographically first string in A. If x < x0 output 0. Otherwise, guess a string z > x such
that |z| ≤ p(|x| + 1). Then guess a y ≤ x. If y and z are in A and r(y) + 1 = r(z), then
we know that and y and z are the (unique) strings in A that most tightly bracket x in the
≤ and the > directions. We can in our current case build the greatest string less than or
equal to x that is in A bit by bit, querying potential prefixes, in polynomial time. Since
rankA(x) = rankA(y), we can compute rankA(x) in polynomial time for arbitrary x. ◭

From Proposition 4.3 and Theorem 4.8, we obtain the following corollary.

◮ Corollary 4.9. If P = UP ∩ coUP then the complement of each nongappy semistrong-

P-rankable set is strong-P-rankable (and so certainly is semistrong-P-rankable).

10 Closure and Nonclosure Properties of the Compressible and Rankable Sets

◮ Theorem 4.10. There exist P-rankable sets A and B such that A ∩ B is infinite but not

FPR-compressible.

Proof. We will define a set A not containing the empty string and satisfying the condition
that for all x ∈ Σ∗, exactly one of x0 and x1 is in A. Then clearly A is P-rankable by a
compression function sending x1 and x0 to rankΣ∗(x). Let A0 and B0 be empty, and let
m0 = ǫ. We will define Ai, Bi, and mi inductively for i > 0. Let ϕi be the ith Turing
machine in some enumeration of all Turing machines.

1. Suppose that ϕi is defined on mi−10, and that for all x ∈ (Ai−1 ∩ Bi−1)∪{y | y > mi−10}

we have ϕi(x) 6= ϕi(mi−10). In this case, we set Ai = Ai−1 ∪ {mi−10, shift(mi−1, 1)0}

and Bi = Bi−1 ∪ {mi−11, shift(mi−1, 1)0} and set mi = shift(mi−1, 2), so that neither
mi−10 nor mi−11 is in Ai ∩Bi. Note that shift(mi−1, 1)0 ∈ Ai ∩Bi but shift(mi−1, 1)0 /∈

Ai−1 ∩ Bi−1.

2. Suppose ϕi is either undefined on mi−10, or that for some x ∈ Ai−1 ∩ Bi−1 we have
ϕi(x) = ϕi(mi−10). In this case, set Ai = Ai−1 ∪ {mi−10}, Bi = Bi−1 ∪ {mi−10},
and mi = shift(mi−1, 1). Note in particular that x and mi−10 are both in Ai ∩ Bi and
lexicographically less than mi0, and take the same value under ϕi.

3. Suppose that the above cases do not hold and there is some x > mi−11 such that
ϕi(x) = ϕi(mi−10). Let y be the lexicographically largest string such that y0 ≤ x, and
let mi = shift(y, 1). Set Ai = Ai−1 ∪ {z0 | mi−1 ≤ z < y} ∪ {x} and Bi = Bi−1 ∪ {z0 |

mi−1 ≤ z < y} ∪ {x}. Note in particular that x and mi−10 are both in Ai ∩ Bi and
lexicographically less than mi0, and take the same value under ϕi.

Finally, let A =
⋃

i≥0 Ai and B =
⋃

i≥0 Bi. Notice that stage i only adds elements
to Ai or Bi that are lexicographically greater than or equal to mi−10, so if x < mi0 and
x /∈ Ai ∩ Bi, then x /∈ A ∩ B. In case 1, we see that ϕi fails to be surjective (i.e, onto Σ∗)
when restricted to A ∩ B, since there is no x < mi0 in A ∩ B mapping to ϕi(mi−10), and
also no x > mi−11 mapping to ϕi(mi−10), and neither mi−10 nor mi−11 is in A ∩ B. In
case 2, we see either that ϕi is undefined on an element of A ∩ B or that two elements of
A ∩ B map to the same element. In case 3, we see that two elements in A ∩ B map to the
same element under ϕi. Thus ϕi fails to compress A ∩ B, and no partial recursive function
can compress A ∩ B. The set A ∩ B is infinite since at least one new element is added to
Ai ∩ Bi during stage i. We also maintain the condition that, for all x < mi, exactly one
of x0 and x1 is in Ai (resp., Bi). Each Ai (resp. Bi) consists of exactly all strings in A

(resp. B) lexicographically less than mi0, and so clearly since this statement holds for each
Ai (resp. Bi) it holds for all of A (resp. B) as well. Thus A and B are P-rankable, but their
intersection is not FPR-compressible. ◭

◮ Theorem 4.11. There exist infinite P-rankable sets A and B such that A ∪ B is not

FPR-compressible.

◮ Theorem 4.12. There exists an infinite P-rankable set whose complement is infinite but

not FPR-compressible.

◮ Theorem 4.13. There exist sets A and B that are not FPR-compressible, yet A ∪ B is

strong-P-rankable. In addition, there exist sets A and B that are not FPR-compressible, yet

A ∩ B is strong-P-rankable.

The proofs of these three theorems are in the appendix.

J. Abascal, L. A. Hemaspaandra, S. Maimon, and D. Rubery 11

5 Additional Closure and Nonclosure Properties

How robust are the polynomial-time and recursion-theoretically compressible and the rank-
able sets? Do sets lose these properties under join, or subtraction, addition, or (better
yet) symmetric difference with finite sets? Or even with sufficiently nice infinite sets? The
following section addresses these questions.

5.1 Complexity-Theoretic Results

We focus on the join (aka disjoint union), giving a full classification of the closure properties
(or lack thereof) of the P-rankable, semistrong-P-rankable, and strong-P-rankable sets, as
well as their complements, under this operation. The literature is not consistent as to
whether the low-order or high-order bit is the “marking” bit for the join. Here, we follow the
classic computability texts of Rogers [15] and Soare [17] and the classic structural-complexity
text of Balcázar, Díaz, Gabarró [4], and define the join using low-order-bit marking: The
join of A and B, denoted A ⊕ B, is A0 ∪ B1, i.e., {x0 | x ∈ A} ∪ {x1 | x ∈ B}. For classes
invariant under reversal, which end is used for the marking bit is not important (in the sense
that the class itself is closed under upper-bit-marked join if and only if it is closed under
lower-bit-marked join). However, the placement of the marking bit potentially matters for
ranking-based classes, since those classes are based on lexicographical order.

The join is such a basic operation that it seems very surprising that any class would
not be closed under it, and it would be even more surprising if the join of two sets that
lack some nice organizational property (such as being P-rankable) can have that property
(can be P-rankable, and we indeed show in this section that that happens)—i.e., the join
of two sets can be “simpler” than either of them (despite the fact that the join of two sets
is the least upper bound for them with respect to ≤p

m [16], and in the sense of reductions
captures the power-as-a-target of both sets). However, there is a precedent for this in the
literature, and it regards a rather important complexity-theoretic structure. It is known
that (EL2)∁ is not closed under the join [10], where EL2 is the second level of the extended
low hierarchy [3].

◮ Theorem 5.1. If P 6= P#P then there exist sets A ∈ P and B ∈ P that are not P-rankable

yet A ∩ B, A ∪ B, and A ⊕ B are strong-P-rankable.

Proof. In this proof we construct a set A1 whose members represent satisfying assignments
of boolean formulas. When we force certain elements, or beacons, into A1 we obtain a set
A such that if we were able to rank A, we could count the number of satisfying assignments
to a boolean formula by comparing the rank of these beacons. The set B is constructed
similarly, but in a way that A ∪ B, A ∩ B, and A ⊕ B are easily strong-P-rankable.

As in the rest of the paper, Σ = {0, 1}. Let A1 = {α01β | α, β ∈ Σ∗ ∧ |α| = |β| ∧ α is a
valid encoding of boolean formula F that has (without loss of generality) k ≤ |α| variables,
the first k bits of β encode a satisfying assignment of F , and the rest of the |β|−k bits of β are
0}. Note that given a string x = α01β ∈ A1, we can unambiguously extract α and β because
they must have length (|x| − 2)/2. Let B1 = {α01β | α, β ∈ Σ∗ ∧ |α| = |β| ∧ α01β /∈ A1}.
Let Beacons = {α000|α| | α ∈ Σ∗} ∪ {α110|α| | α ∈ Σ∗}. Similarly to A1, strings in B1 and
Beacons can be parsed unambiguously. Let A = A1 ∪Beacons. Let B = B1 ∪Beacons. Note
that A and B are both in P because checking if an assignment satisfies a boolean formula
is in P and Beacons is clearly in P.

We will now demonstrate that if either A or B were P-rankable, then #SAT would
be in P. Suppose that A is P-rankable and let f be a polynomial-time ranking function

12 Closure and Nonclosure Properties of the Compressible and Rankable Sets

for A. Let α be a string encoding a boolean formula F . Then we can compute j =
f(α110|α|) − f(α000|α|) in polynomial time. Both α110|α| and α000|α| are in Beacons and
thus in A, so f gives a true ranking for these values. Every string in A between (and not
including) these Beacons strings is from A1 and thus represents a satisfying assignment for
F , and every satisfying assignment for F is represented by a string between these Beacons

strings. Because the last |β|−k bits of β are 0, where k is the number of variables in F , each
satisfying assignment for F is represented exactly once between the two Beacons strings.
Thus j − 1 is the number of satisfying assignments of F . We can compute j in polynomial
time, so #SAT is polynomial-time computable and thus P = P#P, contrary to our P 6= P#P

hypothesis.
Now suppose that B is P-rankable and similarly to before we will let f be the P-time

ranking function for it. Again we will let α be the encoding for some boolean formula F

and j = f(α110|α|) − f(α000|α|). In this case the strings in B between α110|α| and α000|α|

are the strings of the form α01Σ|α| except for those that are in A1 (and recall that those
that are in A1 are precisely the padded-with-0s satisfying assignments for F). Because we
know the number of strings of the form α01Σ|α|, we can again find the number of satisfying
assignments for F . Namely, we have that j = 1+2|α| −s, where s is the number of satisfying
assignments of F . Thus if B is P-rankable, then we can find s in polynomial time and thus
P = P#P, contrary to our P 6= P#P hypothesis.

Finally, we show that A ∪ B, A ∩ B, and A ⊕ B are strong-P-rankable. The set A ∩ B is
simply Beacons, which is strong-P-rankable as follows. Any string lexicographically below
00 has rank 0. For any α ∈ Σ∗, the rank of α000|α| is 2rankΣ∗(α)−1 and the rank of α110|α|

is 2rankΣ∗(α). For every other string, it is easy to find the lexicographically greatest string
in Beacons that is lexicographically less than the given string in polynomial time, and so it
is possible to rank the string in polynomial time.

The set A ∪ B = {α01β | α ∈ Σ∗ ∧ β ∈ Σ∗ ∧ |α| = |β|} ∪ {α000|α| | α ∈ Σ∗} ∪ {α110|α| |

α ∈ Σ∗}, and is also strong-P-rankable, as follows. Any string lexicographically below
00 has rank 0. For any α ∈ Σ∗, the rank of α000|α| is 1 +

∑

x<lexα(2|x| + 2), where
x <lex α denotes that x is lexicographically less than α. Note that although the sum is
over an exponentially sized set, it still can be computed in polynomial time because the
summands depend only on the length of the element in the set. Let b(x) be the number
of strings lexicographically less than α but with the same length as α. Then we have that
1 +

∑

x<lexα(2|x| + 2) = 1 + b(α)(2|α| + 2) +
∑|α|−1

i=0 (2i(2i + 2)).
The rank of α110|α| is

∑

x≤lexα(2|x| + 2), where x ≤lex α denotes that x is lexicograph-
ically less than or equal to α. For any α, β ∈ Σ∗ where |α| = |β|, the rank of α01β is
b(β)+2+

∑

x<lexα(2|x| +2), where n is the integer such that β is the nth string of its length.
As above, each term is only dependent on the length of x, and is computable in polynomial
time. For any other not string in A ∪ B, it is easy to find the greatest string in A ∪ B

lexicographically less than the given string in polynomial time, and thus it is easy to rank
that string.

We can show that A ⊕ B = {a0 | a ∈ A} ∪ {b1 | b ∈ B} is strong-P-rankable using the
fact that A ∪ B and A ∩ B are strong-P-rankable, and both A and B are in P. The rank of
ǫ is 0. The rank of 0 is 1 if ǫ ∈ A and otherwise is 0. For x ∈ Σ∗, we have rankA⊕B(x1) =
rankA∪B(x)+rankA∩B(x). For x 6= ǫ, we have rankA⊕B(x0) = rankA⊕B(x1)−δB(x), where
δB(x) = 1 if and only if x ∈ B. ◭

◮ Theorem 5.2. The following are equivalent:

1. strong-P-rankable∁ is closed under join,

2. semistrong-P-rankable∁ is closed under join, and

J. Abascal, L. A. Hemaspaandra, S. Maimon, and D. Rubery 13

3. P = P#P.

Proof. Theorem 5.1 shows that either of 1 or 2 would imply 3. Now we show that 3 implies
1 and 2, or equivalently the negation of either 1 or 2 would imply the negation of 3. Suppose
that strong-P-rankable∁ (resp., semistrong-P-rankable∁) is not closed under join. Then there
are two sets A and B that are in strong-P-rankable∁ (resp., semistrong-P-rankable∁) but
A ⊕ B is strong-P-rankable (resp., semistrong-P-rankable∁). Then both A and B are in P.
This is because A ⊕ B ∈ P and to test x for membership in A, for example, we can just test
x0 for membership in A ⊕ B. It was shown by Hemachandra and Rudich [9] that P = P#P,
P = semistrong-P-rankable, and P = strong-P-rankable are equivalent. Since A and B

are in P but not strong-P-rankable (resp., semistrong-P-rankable), P 6= strong-P-rankable
(respectively P 6= semistrong-P-rankable) and thus P 6= P#P. ◭

◮ Theorem 5.3. The class P-rankable∁ is not closed under join.

◮ Theorem 5.4. The class P-rankable is not closed under join.

◮ Theorem 5.5. The class strong-P-rankable is closed under join.

◮ Theorem 5.6. The class semistrong-P-rankable is closed under complement if and only if

it is closed under join.

◮ Theorem 5.7. The class P-compressible′ is closed under join.

The proofs of Theorems 5.3–5.7 are in the appendix.

5.2 Recursion-Theoretic Results

◮ Theorem 5.8. 1. If A is an FREC-rankable set, B1 ⊆ A is a recursive set, and B2 ⊆ A

is a recursive set, then A △ (B1 ∪ B2) (equivalently, (A − B1) ∪ B2) is FREC-rankable.

2. If A is FREC-compressible, B1 ⊆ A is recursive, and A − B1 contains an infinite RE
subset, then A − B1 is FREC-compressible.

3. If A is an FREC-compressible set and B2 ⊆ A is a recursive set, then A ∪ B2 is an

FREC-compressible set.

Theorem 5.8’s proof is in the appendix.

◮ Corollary 5.9. 1. The class of FREC-rankable sets is closed under symmetric difference

with finite sets (and thus also under removing and adding finite sets).

2. The class of FREC-compressible sets is closed addition and subtraction of finite sets.

6 Conclusions

Taking to heart the work in earlier papers that views as classes the collections of sets that
have (or lack) rankability/compressibility properties, we have studied whether those classes
are closed under the most important boolean and other operations. For the studied classes,
we in almost every case were able to prove that they are closed under the operation, or
to prove that they are not closed under the operation, or to prove that whether they are
closed depends on well-known questions about the equality of standard complexity classes.
Additionally, we have introduced the notion of compression onto a set and have showed
the robustness of compression under this notion, as well as the limits of that robustness.
Appendix B provides some additional directions and some preliminary results on them.

14 Closure and Nonclosure Properties of the Compressible and Rankable Sets

References

1 E. Allender. Invertible functions, 1985. PhD thesis, Georgia Institute of Technology.
2 C. Álvarez and B. Jenner. A very hard log-space counting class. Theoretical Computer

Science, 107:3–30, 1993.
3 J. Balcázar, R. Book, and U. Schöning. Sparse sets, lowness and highness. SIAM Journal

on Computing, 15(3):739–746, 1986.
4 J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. EATCS Texts in Theoretical

Computer Science. Springer-Verlag, 2nd edition, 1995.
5 A. Bertoni, M. Goldwurm, and N. Sabadini. The complexity of computing the number of

strings of given length in context-free languages. Theoretical Computer Science, 86(2):325–
342, 1991.

6 A. Goldberg and M. Sipser. Compression and ranking. SIAM Journal on Computing,
20(3):524–536, 1991.

7 J. Goldsmith, L. Hemachandra, and K. Kunen. Polynomial-time compression. Computa-

tional Complexity, 2(1):18–39, 1992.
8 J. Goldsmith and S. Homer. Scalability and the isomorphism problem. Information Pro-

cessing Letters, 57(3):137–143, 1996.
9 L. Hemachandra and S. Rudich. On the complexity of ranking. Journal of Computer and

System Sciences, 41(2):251–271, 1990.
10 L. Hemaspaandra, Z. Jiang, J. Rothe, and O. Watanabe. Boolean operations, joins, and

the extended low hierarchy. Theoretical Computer Science, 205(1–2):317–327, 1998.
11 L. Hemaspaandra and D. Rubery. Recursion-theoretic ranking and compression. Journal

of Computer and System Sciences. To appear; preliminary version available as [12].
12 L. Hemaspaandra and D. Rubery. Recursion-theoretic ranking and compression. Tech-

nical Report arXiv:1606.01185 [cs.LO], Computing Research Repository, arXiv.org/corr/,
October 2016. Revised, December 2017.

13 L. Hemaspaandra, M. Zaki, and M. Zimand. Polynomial-time semi-rankable sets. In Jour-

nal of Computing and Information, 2(1), Special Issue: Proceedings of the 8th International

Conference on Computing and Information, pages 50–67, 1996. CD-ROM ISSN 1201-
8511/V2/#1.

14 D. Huynh. The complexity of ranking simple languages. Mathematical Systems Theory,
23(1):1–20, 1990.

15 H. Rogers, Jr. The Theory of Recursive Functions and Effective Computability. McGraw-
Hill, 1967.

16 U. Schöning. Complexity and Structure. Springer-Verlag Lecture Notes in Computer Science

#211, 1986.
17 R. Soare. Recursively Enumerable Sets and Degrees: A Study of Computable Functions and

Computably Generated Sets. Perspectives in Mathematical Logic. Springer-Verlag, 1987.

A Appendix

In this section, we include proofs omitted from earlier sections.

Proof of Theorem 4.11. Let a set A not containing the empty string satisfy the condition
that for all x ∈ Σ∗, exactly one of x0, x1 is in A. Then clearly A is P-rankable by a function
sending x1 and x0 to rankΣ∗(x).

Let A0 and B0 be empty, and let m0 = ǫ. We will construct Ai, Bi, and mi inductively
for i > 0. Let ϕi be the ith Turing machine in some enumeration of all Turing machines.

J. Abascal, L. A. Hemaspaandra, S. Maimon, and D. Rubery 15

1. Suppose that ϕi is defined on mi−10, and that for all x in Ai−1 ∪ Bi−1 ∪ {y | y >

mi−10} we have ϕi(x) 6= ϕi(mi−10). In this case, we set Ai = Ai−1 ∪ {mi−11} and
Bi = Bi−1 ∪ {mi−11}, and we set mi = shift(mi−1, 1).

2. Suppose ϕi is either undefined on mi−10, or that for some x ∈ Ai−1 ∪ Bi−1 we have
ϕi(x) = ϕi(mi−10). In this case, set Ai = Ai−1 ∪ {mi−10}, Bi = Bi−1 ∪ {mi−10}, and
mi = shift(mi, 1).

3. Suppose that the above cases do not hold and there is some x ≥ mi−10 such that
ϕi(x) = ϕi(mi−10). Let mi be the lexicographically smallest string such that mi0 > x.
Set Ai = Ai−1 ∪ {y0 | mi−1 ≤ y < mi} and Bi = Bi−1 ∪ {y1 | mi−1 ≤ y < mi}. Note
that both mi−10 and x are in Ai ∪ Bi.

Finally, let A =
⋃

i≥0 Ai and B =
⋃

i≥0 Bi. Stage i only adds elements to Ai or Bi that
are lexicographically greater than or equal to mi−10, so if x < mi0 and x /∈ Ai ∪ Bi, then
x /∈ A ∪ B. In case 1, we see that ϕi fails to be surjective (i.e., onto Σ∗) when restricted to
A ∪ B, since there is no x < mi−10 in A ∪ B mapping to ϕi(mi−10), and also no x > mi0
mapping to ϕi(mi−10), so no element in A ∪ B compresses to ϕi(mi−10). In case 2, we see
either that ϕi is undefined on mi−10 ∈ A∪B or that mi−10 and some other element in A∪B

map to the same element, so injectivity when restricted to A ∩ B fails. Similarly, in case 3,
we see that mi−10 and some other element in A ∪ B will map to the same value under ϕi.
Thus for all i we see that ϕi fails to compress A ∪ B, and so no partial recursive function
compresses A ∪ B. Note that we maintain the condition that for all x < mi, exactly one of
x0 and x1 is in Ai (resp., Bi). This condition holds in A (resp., B), and this property carries
over to A and B as well. Each Ai (resp. Bi) consists of exactly all strings in A (resp. B)
lexicographically less than mi0, and so clearly since this statement holds for each Ai (resp.
Bi) it holds for all of A (resp. B) as well. Thus A and B are P-rankable, but A ∪ B is not
FPR-compressible. ◭

Proof of Theorem 4.12. We will construct a set A consisting of strings with length at least
2, with the property that for every x ∈ Σ∗, exactly one of x00, x01, x10, and x11 is in A.
Clearly A will be infinite, and its complement is infinite as well. Also, A will be P-rankable
by sending x00, x01, x10 and x11 to rankΣ∗ (x). Let A0 = 0 and m0 = ǫ. We will construct
Ai and mi inductively for i > 0. Let ϕi be the ith Turing machine in some enumeration of
all Turing machines.

1. Suppose ϕi halts on mi−100, and there is no x ∈ Ai−1 where x < mi−100 such that
ϕi(x) = ϕ(mi−100), and that there is no x > mi−100 such that ϕi(x) = ϕ(mi−100).
Then set Ai = Ai−1 ∪ {mi00} and set mi = shift(mi−1, 1).

2. Suppose ϕi is undefined on mi−100, or that there is some x < mi−100 where x ∈ Ai−1

and ϕ(x) = ϕ(mi−100). Then set Ai = Ai−1 ∪ {mi−101} and set mi = shift(mi−1, 1).

3. Suppose that the above cases do not hold, ϕi is defined on mi−100, and ϕi(mi−100) =
ϕ(x) for some x ∈ {mi−101, mi−110, mi−111}. Then set Ai = Ai−1 ∪ {z}, where z is a
fixed arbitrary element in {mi−101, mi−110, mi−111} − {x}, and set mi = shift(mi−1,
1). Note that mi−100 and x are both in A and below mi00, and take the same value
under ϕi.

4. Suppose the above cases do not hold and ϕi is defined on mi−100 and ϕi(mi−100) =
ϕ(x) for some x > mi11. Let y be equal to x without its last two characters, and set
mi = shift(y, 1). Let Ai = Ai−1 ∪ {mi−101} ∪ {z11 | mi < z < y} ∪ {w}, where w is
some element in {y00, y01, y10, y11}− {x}. Note that mi−100 and x are both in Ai and
lexicographically less than mi00, and take the same value under ϕi.

16 Closure and Nonclosure Properties of the Compressible and Rankable Sets

Finally, let A =
⋃

i≥0 Ai. Notice that stage i adds to A only elements that are lexico-
graphically greater than or equal to mi−100, so if x < mi00 and x ∈ Ai, then x ∈ A. In
case 1, we see that ϕi fails to be surjective (i.e., onto Σ∗) when restricted to A, since there
is no x < mi00 in A mapping to ϕi(mi−100), and also no x ≥ mi0 mapping to ϕi(mi−100).
In case 2, either ϕi does not halt on mi00 ∈ A or there are two elements in A that take
the same value under ϕi. In cases 3 and 4, we see that there are two elements in A that
take the same value under ϕi. Thus in all cases ϕi fails to compress A and so A is not
FPR-compressible. ◭

Proof of Theorem 4.13. Let C be a set such that A = C0 ∪ Σ∗1 is not FPR-compressible.
Such a set can be constructed using a similar method to those of Theorems 4.11, 4.12,
and 4.13. Then B = C1 ∪ Σ∗0, A′ = C00 ∪ Σ∗1, and B′ = C10 ∪ Σ∗1 are all also not
FPR-compressible, since clearly they are all recursively isomorphic. Note that A ∪ B = Σ∗

and A′ ∩ B′ = Σ∗1, both of which are strong-P-rankable. ◭

Proof of Theorem 5.3. Let A by any language that is not P-rankable and whose comple-
ment is not P-rankable. An example of such a set is A = {x000 | x ∈ Σ∗} ∪ {x001 |

x ∈ B} ∪ {x010 | x ∈ Σ∗} ∪ {x100 | x ∈ B}, where B is any undecidable set. This set
is not even FREC-rankable. Note x ∈ B if and only if rankA(x010) − rankA(x000) > 1,
so if A were FREC-rankable, we could decide B. Similarly, x /∈ B if and only if
rankA(x101) − rankA(x011) > 1, so if A were FREC-rankable, B would be decidable, but
this is a contradiction.

Then A ⊕ A = A0 ∪ A1 is P-rankable. It can be ranked by any function mapping x0 and
x1 to rankΣ∗ (x). ◭

Proof of Theorem 5.4. Let A be some undecidable set. Let A′ = A ⊕ A. Then A′ is
P-rankable by any function mapping x0 and x1 to rankΣ∗(x). Now let B = Σ∗ ⊕ A′.
Then B is the join of two P-rankable sets. Suppose B were P-rankable, then we can query
rankB(x0) for all strings x. If rankB(x0) + 2 = rankB(shift(x, 1)0), we know that x1 ∈ B,
and thus x ∈ A′. Otherwise, x1 /∈ B so x1 /∈ A′. Since we can test membership in A′, we
can test membership of x in A by asking whether x0 ∈ A′. This is a contradiction as A was
assumed undecidable; thus B cannot be P-rankable. ◭

Proof of Theorem 5.5. Let A and B be strong-P-rankable. The rank of x0 in A ⊕ B is
rankA(x) + rankB(shift(x, −1)), and the rank of x1 is rankA(x) + rankB(x). The rank of
ǫ is 0. All of these values can clearly be computed in polynomial time so A ⊕ B is strong-
P-rankable. ◭

Proof of Theorem 5.6. Suppose semistrong-P-rankable is closed under complement. Then
semistrong-P-rankable is equal to strong-P-rankable, so semistrong-P-rankable is closed un-
der join.

Now suppose semistrong-P-rankable is closed under join. Let set A be semistrong-
P-rankable by ranking function h. Let X = Σ∗ ⊕ A. Then X is the join of two semistrong-
P-rankable sets and thus is semistrong-P-rankable by some ranking function f . The ranking
function for A does the following. Given x, if h(x) returns a rank (rather than an indication
that x /∈ A) then return an indication that x /∈ A. Otherwise let y = shift(x, 1) and return
2rankΣ∗(x) + 1 − f(y0). There are a total of 2rankΣ∗(x) + 2 strings lexicographically less
than or equal to y0 in Σ∗. All those missing in X correspond to either ǫ or strings not
in A that are strictly less than y. Since y0 ∈ X , we know that f(y0) of these are in X .
The rest are in Σ∗ − X = {x1 | x ∈ A} ∪ {ǫ}. Thus the number of strings in A below x

J. Abascal, L. A. Hemaspaandra, S. Maimon, and D. Rubery 17

is 2rankΣ∗(x) + 1 − f(y0). Thus A is semistrong-P-rankable, so semistrong-P-rankable is
closed under complement. ◭

Proof of Theorem 5.7. Let A and B be two P-compressible′ sets. Let f and g be the com-
pression functions for A and B respectively. Let h(x0) = f(x)0 and h(x1) = shift(f(x)0, −1).
Now h is a compression function for A ⊕ B since the image of h restricted to A0 is Σ∗0, and
the image of h restricted to B1 is Σ∗1 ∪ {ǫ}. Each of A0 and B0 maps injectively because
f and g are compression functions, and together they map injectively on all of A ⊕ B to all
of Σ∗. The function h is clearly polynomial time, and so A ⊕ B is P-compressible′. ◭

Proof of Theorem 5.8. For the first part of this theorem, let f be an FREC-ranking
function for A. Since B1 and B2 are recursive, their ranking functions rankB1

and rankB2

are in FREC. Our FREC ranking function for A △ (B1 ∪ B2) is f ′(x) = f(x) + rankB2
(x) −

rankB1
(x). This directly accounts for the additions and deletions done by B1 and B2.

We now prove the second part of the theorem. The statement is clearly true if B1 is
finite, even in the case that A−B1 does not contain an infinite RE subset (as long as A−B1

is still infinite). This is because the image of A − B1 under a compression function for A

is cofinite, and cofinite sets are compressible. Thus composing a compression function for
the cofinite image of A − B1 with a compression function for A, we obtain a compression
function for A − B1.

So from this point on we assume that B1 is infinite. Let h be an FREC-compression
function for A. By the hypothesis of the theorem, there is an infinite RE subset of A−B1, call
it C. Since every infinite RE set contains an infinite recursive subset, let B2 ⊆ C be infinite
and recursive. Let b1 < b2 < b3 < · · · be the elements in B1, and let c1 < c2 < c3 < · · · be
the elements in B2. Consider the following function.

g(x) =

x if x 6∈ B1 ∪ B2,

ǫ if x ∈ B1,

b⌈i/2⌉ if x = ci and i is odd, and

ci/2 if x = ci and i is even.

Let f(x) = h(g(x)). We claim that f is a compression function for A − B1. We do this
by showing g is a compression function for A − B1 onto A, since we already know that h

compresses A to Σ∗. See that g is the identity on A−(B1∪B2). See also that g(B2) = B1∪B2

injectively and surjectively. Since (A−B1)−B2 and B2 are disjoint and have disjoint images,
and since g is injective and surjective on both these domains onto their respective images, it
follows that g is injective and surjective on A−B1 to the image g((A−B1)−B2)∪g(B2) = A.
Thus g is a compression function for A−B1 to A, and h is a compression function for A to Σ∗,
so f is a compression function for A−B1 to Σ∗. In other words, A−B1 is FREC-compressible.

We now prove the third part of the theorem. Let f be an FREC-compression function
for A. If B2 is finite, our FREC compression function for A ∪ B2 is f ′(x) = shift(f(x), ‖B2‖)
for x 6∈ B2 and f ′(x) = shift(ǫ, rankB2

(x)) for x ∈ B2.
On other hand, if B2 is infinite, let g be an FREC compression function for B2, e.g., g can

be taken to be (recall that B2 is recursive) defined by g(x) being the max(rankB2
(x), 1)-st

string in Σ∗. We define f ′(x) as follows. (Recall that for us Σ is always fixed as being
{0, 1}.) If x 6∈ B2 then f ′(x) = 1f(x) (i.e., f(x) prefixed with a one). If x ∈ B2 and g(x) = ǫ

then f ′(x) = ǫ. And, finally, if x ∈ B2 and g(x) 6= ǫ then f ′(x) = 0 shift(g(x), −1). (The
shift-by-one treatment of the x 6∈ B case is because we must ensure that ǫ is mapped to

18 Closure and Nonclosure Properties of the Compressible and Rankable Sets

by some string in A ∪ B2.) Now, f ′ maps A ∪ B bijectively onto Σ∗, so f ′ is an FREC

compression function for A ∪ B, so A ∪ B is FREC-compressible. ◭

B Appendix

B.1 Relativization

The results of [11] all relativize in a straightforward manner. In this section, we include
a few examples. This justifies our limitation to FREC and FPR: By relativization, we get
analogous results about more powerful function classes, such as F∆2

.4

◮ Theorem B.1. For each i ≥ 1, ∆i = Σi ∩ F∆i
-compressible′.

Proof. Relativization of [12, Theorem 5.3] (see also [7, 11]). ◭

Since, for i ≥ 1 F∆i
⊇ FREC, we get the following easy corollary.

◮ Corollary B.2. For each i ≥ 1, Σi ∩ FREC-compressible′ ⊆ ∆i.

◮ Theorem B.3. For each i ≥ 1, Πi ∩ F∆i
-rankable = Πi ∩ FΣi−1

PR -rankable.

Proof. Relativization of [12, Theorem 4.6] (see also [11]).
◭

B.2 Compressibility, Honesty, and Selectivity

If we restrict our attention to honest functions, we can prove some very clean results. There
is a little subtlety here, since there are many nonequivalent definitions of honesty. We use
the following:

A (possibly partial) function f is honest on B if there is a recursive function g : N → N

such that for any x ∈ domain(f) ∩ B, g(|f(x)|) ≥ |x|. If f is honest on Σ∗, we say f is
honest.

This gives two potential ways to define honest compressibility. For a given set A, we can
require the compression function to be honest on Σ∗, or only on A. We call the former no-
tion honestly-F -compressible , and the latter honestly-on-A-F -compressible. The following
theorem asserts that these two notions are equivalent for FPR and FREC functions.

◮ Theorem B.4. 1. For each set A, A is honestly-FPR-compressible if and only if A is

honestly-on-A-FPR-compressible.

2. For each set A, A is honestly-FREC-compressible if and only if A is honestly-on-A-

FREC-compressible.

Proof. The “only if” direction is trivial, since every honest on Σ∗ function is honest on A.
For the “if” direction, let f be an honest on A compression function for A, and let g be a

recursive honesty-bound function for f . Define f ′ as follows, where domain(f ′) = domain(f).
Over the domain of f , if g(|f(x)|) ≥ |x|, then f ′(x) = f(x). If g(|f(x)|) < |x|, let f ′(x) = x.
Since f was honest on A, for any x ∈ A, f ′(x) = f(x). Thus f ′ is still a compression
function for A. The recursive function g′(n) = max(g(n), n) satisfies, for all x ∈ domain(f ′),
g′(|f ′(x)|) ≥ |x|, and thus proves that f ′ is honest (on Σ∗).

Note that when f is recursive, so is f ′, giving us the second part of the theorem. ◭

4 F∆i+1
will denote the class of total functions computed by Turing machines given access to a Σi oracle.

Equivalently, F∆i+1
= (FREC)Σi . Note that FREC = F∆1

. The class of partial functions computed by

Turing machines given access to a Σi oracle will be denoted (FPR)Σi or simply as FΣi

PR
.

J. Abascal, L. A. Hemaspaandra, S. Maimon, and D. Rubery 19

The following proof uses F -selectivity, which was very rarely useful. A set A is F -selective
if there is a function f ∈ F of two arguments such that the following hold:
1. For any x, y ∈ Σ∗, either f(x, y) = x or f(x, y) = y.
2. If x ∈ A or y ∈ A, f(x, y) ∈ A.

Intuitively, f selects the “more likely” of its two inputs. When x, y 6∈ A, or x, y ∈ A, f

can choose either input. It’s only restricted when one input is in A, and the other is not.
Both FREC-selectivity and honestly-FREC-compressibility are fairly strong claims. Only the
infinite recursive sets satisfy both. Let INFINITE denote the infinite sets over the alphabet
Σ.

◮ Theorem B.5. FREC-selective ∩ honestly-FREC-compressible = REC ∩ INFINITE.

Proof. Every infinite recursive set is easily FREC-selective and honestly-FREC-compressible
giving the ⊇ inclusion.

For the ⊆ inclusion, let A be honestly-FREC-compressible by f , with honesty bound
g, and let h be a FREC selector function for A. Then, for any z, by the definition of
compressibility and honesty:

‖{w | f(w) = z ∧ |w| ≤ g(|z|)} ∩ A‖ = 1.

So define the finite set Qz = {w | f(w) = z ∧ |w| ≤ g(|z|)}. We know this set contains
exactly one element of A, and this will allow us to decide A.

On input x, compute f(x) and Qf(x). Then use the selector function to find the unique
element y ∈ Qf(x) such that for any z ∈ Qf(x), h(y, z) = y. Such a y exists and is unique
because there is exactly one element of A in Qf(x).

If x = y, then x ∈ A. Otherwise, x 6∈ A, so A is recursive. Since A was compressible, it
is infinite as well. ◭

In fact, honestly-FREC-compressible is much stronger than FREC-compressible. While
all coRE cylinders are FREC-compressible (see [11]), no set in RE − REC is honestly-
FREC-compressible. This was first stated, without proof, in the conclusion section of [7].

◮ Theorem B.6 (See [7]). honestly-FREC-compressible ∩ coRE = REC ∩ INFINITE.

Proof. Every infinite recursive set is easily coRE and honestly-FREC-compressible giving
the ⊇ inclusion.

For the ⊆ inclusion, let A be coRE and honestly-FREC-compressible by a compression
function f . Let M accept A Define the sets Qz from the proof of Theorem B.5.

Then for any input x, compute f(x) and Qf(x). Then dovetail applying M to each ele-
ment of Qf(x) until only one remains. If the remaining element is x, then x ∈ A. Otherwise,
x 6∈ A, so A is recursive and infinite. ◭

This next group of theorems builds to a result that if A is nonrecursive, FREC-selective
and FREC-compressible then A has an infinite RE subset. Since FREC-selectivity is such a
strong assumption, this theorem is of limited use. However, the arguments used to show it
may prove useful in the proof of other claims.

◮ Theorem B.7. If A is FREC-compressible via f and f(A) is finite, then A is recursive.

Proof. Using the definition of compressibility, L = {x ∈ A | f(x) ∈ f(A)} is finite. By the
assumptions of the theorem, so is f(A). But, x ∈ A if and only if x ∈ L ∨ f(x) 6∈ f(A).
Since both of these sets are finite, this condition is recursive, and so is A. ◭

20 Closure and Nonclosure Properties of the Compressible and Rankable Sets

Now we consider the case where f(A) is infinite.

◮ Theorem B.8. If A if FREC-compressible via f and f(A) is infinite, then there is an

infinite RE set BA = {(p1, q1), (p2, q2), ...} such that no string appears in more than one

pair and each pair contains at least one element of A. 5

Proof. We describe a machine that enumerates the desired set.
Initialize Q = ∅. Begin running f(ǫ), f(0), f(1), ... in sequence. Since f(A) is infinite,

there will be two strings x, y 6∈ Q where f(x) = f(y). Enumerate (x, y), and add both x

and y to Q. The enumerated set will have the desired properties. ◭

◮ Corollary B.9. If A is nonrecursive, FREC-selective, and FREC-compressible, then A has

an infinite RE subset.

Proof. Create the set from Theorem B.8, and apply the FREC-selector to each pair. If the
selector chooses pi, then qi ∈ A, and vice versa. So we can enumerate an infinite RE subset
of A by enumerating the elements not chosen by the selector. ◭

5 In the theorem and the proof (and similarly regarding the proof of the corollary) we should, to be
formally correct, define and work with the one-dimensional set {〈a, b〉 | (a, b) ∈ BA}, where 〈·, ·〉 is a
nice, standard pairing function; but let us consider that implicit.

	1 Introduction
	2 Definitions
	3 Compression onto B: Robustness with Respect to Target Set
	4 Closures and Nonclosures under Boolean Operations
	5 Additional Closure and Nonclosure Properties
	5.1 Complexity-Theoretic Results
	5.2 Recursion-Theoretic Results

	6 Conclusions
	A Appendix
	B Appendix
	B.1 Relativization
	B.2 Compressibility, Honesty, and Selectivity

