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LIGM, Université Paris-Est, Marne-la-Vallée, France ryzhikov.andrew@gmail.com

Abstract

In 1999 Lyngsø and Pedersen proposed a conjecture stating that every binary circular word of length

n with equal number of zeros and ones has an antipalindromic linear subsequence of length at least 2

3
n.

No progress over a trivial 1

2
n bound has been achieved since then. We suggest a palindromic counterpart

to this conjecture and provide a non-trivial infinite series of circular words which prove the upper bound

of 2

3
n for both conjectures at the same time. The construction also works for words over an alphabet of

size k and gives rise to a generalization of the conjecture by Lyngsø and Pedersen. Moreover, we discuss

some possible strengthenings and weakenings of the named conjectures. We also propose two similar

conjectures for linear words and provide some evidences for them.
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1 Introduction

Investigation of subsequences in words is an important part of string algorithms and combinatorics, with
applications to string processing, bioinformatics, error-correcting codes. A lot of research has been done in
algorithms and complexity of finding longest common subsequences [1, 4], their expected length in random
words [9], codes with bounded lengths of pairwise longest common subsequences [10], etc. An important type
of subsequences is a longest palindromic subsequence, which is in fact a longest common subsequence of a
word and its reversal. Despite a lot of research in algorithms and statistics of longest common subsequences,
the combinatorics of palindromic subsequences is not very well understood. We mention [2, 5–7] as some
results in this direction. In this note we recall some known conjectures on this topic and provide a number
of new ones.

The main topic of this note are finite words. A linear word (or just a word) is a finite sequence of
symbols over some alphabet. A subsequence of a linear word w = a1 . . . an is a word w′ = ai1 . . . aim with
i1 < . . . < im. A circular word is an equivalence class of linear words under rotations. Informally, a circular
word is a linear word written on a circle, without any marked beginning or ending. A linear word is a
subsequence of a circular word if it is a subsequence of some linear word from the corresponding equivalence
class (such linear word is called a linear representation).

A word w = a1 . . . an is a palindrome if ai = an−i+1 for every 1 ≤ i ≤ n
2 . A word is called binary

if its alphabet is of size two (in this case we usually assume that the alphabet is {0, 1}). A binary word
w = a1 . . . an is an antipalindrome if ai 6= an−i+1 for every 1 ≤ i ≤ n

2 . The reversal w
R of a word w = a1 . . . an

is the word an . . . a1.
In 1999 Lyngsø and Pedersen formulated the following conjecture motivated by analysis of an approxi-

mation algorithm for a 2D protein folding problem [8].

Conjecture 1 (Lyngsø and Pedersen, 1999). Every binary circular word of length n divisible by 6 with equal
number of zeros and ones has an antipalindromic subsequence of length at least 2

3n.

∗This research was suported by the European Research Council (ERC) under the European Unions Horizon 2020 research
and innovation programme under the Grant Agreement No 648132.
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To the best of our knowledge, no progress has been achieved in proving this conjecture, even though it
has drawn substantial attention from the combinatorics of words community. However, it is a source of other
interesting conjectures.

In the mentioned conjecture, the position of a longest antipalindromic subsequence on the circle is arbi-
trary. A strengthening is to require the two halves of the subsequence to lie on different halves of the circle
according to some partition of the circle into two parts of equal length. Surprisingly, experiments show that
this does not change the bound.

Conjecture 2 (Brevier, Preissmann and Sebő, [3]). Let w be a binary circular word of length n divisible
by 6 with equal number of zeros and ones. Then w can be partitioned into two linear words w1, w2 of equal
length, w = w1w2, having subsequences s1, s2 such that s1s2 is an antipalindrome and |s1| = |s2| =

1
3 |w|.

We checked this conjecture up to n = 30 by computer. The worst known case for the both conjectures
is provided by the word w = 0i1i(01)i1i0i showing the tightness of the conjectured bound (by tightness
everywhere in this note we understand the existence of a lower bound different from the conjectured bound
by at most a small additive constant). The bound 1

2n instead of 2
3n can be easily proved, but no better

bound is known.

Proposition 3 (Brevier, Preissmann and Sebő, [3]). Conjecture 2 is true when replacing |s1| = |s2| =
1
3 |w|

by |s1| = |s2| =
1
4 |w|.

Proof. Consider an arbitrary partition of w into two linear words w1, w2 of equal length, w = w1w2. The
number of zeros in w1 is the same as the number of ones in w2 and vice versa. Thus we can pick an
antipalindromic subsequence 0k1k or 1k0k with k ≥ 1

4n having the required properties.

2 Circular Words

A natural idea is to look at palindromic subsequences instead of antipalindromic ones. This leads to a number
of interesting conjectures which we describe in this section. First, we formulate palindromic counterparts to
Conjectures 1 and 2.

Conjecture 4. Every binary circular word of length n has a palindromic subsequence of length at least 2
3n.

Conjecture 5. Let w be a binary circular word of length n divisible by 6. Then w can be partitioned into 2
linear words w1, w2 of equal length, w = w1w2, having subsequences s1, s2 such that s1 = sR2 (that is, s1s2 is
a palindrome) and |s1s2| =

2
3 |w|.

We checked both conjectures up to n = 30 by computer. The worst known case for Conjecture 5 is
provided by the word 02i(10)i12i, showing the tightness of the conjectured bound. The word 0i(10)i1i

provides an upper bound of 3
4n for Conjecture 4. A better bound is discussed in Section 3.

In Conjecture 4 it is enough to pick the subsequence consisting of all appearances of the letter with the
largest frequency to get the 1

2n lower bound. It is also easy to prove the 1
2n bound for Conjecture 5. No

better bounds are known to be proved.

Proposition 6. Conjecture 5 is true when replacing |s1s2| =
2
3 |w| by |s1s2| =

1
2 |w|.

Proof. Consider an arbitrary partition of w into two linear words w1, w2 of equal length, w = w1w2. Assume

that the number of ones in w is at least |w|
2 , and w1 has less ones than w2. By changing the partition by one

letter each time (by adding a subsequent letter to the end of w1 and removing one from the beginning), we
get an opposite situation in 1

2n steps. That means that there exists a partition w = w′
1w

′
2, |w

′
1| = |w′

2|, such
that the number of ones in w′

1 is the same as the number of ones in w′
2. Thus, we can pick an antipalindromic

subsequence 1k with k ≥ 1
2n having the required properties.

Conjecture 5 is about a palindromic subsequence aligned with some cut of the circular word into two
equal halves. There are n

2 such cuts, so one attempt to simplify the conjecture is to look at only two cuts
which are “orthogonal”. This way we attempt to switch from the circular case to something close to the
linear case, which is often easier to deal with.
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Let w be a circular word of length n divisible by 4. Let w1w2w3w4 be some partition of w into four linear
words of equal length. Let p1p

′
1 and p2p

′
2, |p1| = |p′1|, |p2| = |p′2|, be the longest palindromic subsequences

of w such that p1, p
′
1, p2, p

′
2 are subsequences of w1w2, w3w4, w2w3, w4w1 respectively. Informally, these

two palindromes are aligned to two orthogonal cuts of the word w into two linear words of equal length.
The partitions w1w2, w3w4 and w2w3, w4w1 are two particular partitions (made by two orthogonal cuts)
considered among all n

2 partitions in Conjecture 5.

Conjecture 7. For every word w of length n divisible by 4 and its every linear representation w = w1w2w3w4,
the maximum of the lengths of p1p

′
1 and p2p

′
2 defined above is at least 1

2n.

We checked this conjecture up to n = 30 by computer. The worst known case is provided by the already
appeared word 0i(10)i1i showing the tightness of the conjectured bound. The bound 1

3n can be proved as
follows.

Proposition 8. For every word w of length n divisible by 4 and its every linear representation w =
w1w2w3w4, the maximum of the lengths of p1p

′
1 and p2p

′
2 is at least 1

3n.

Proof. Suppose that |p1p
′
1| <

1
3n. Then without loss of generality we can assume that the number of zeros

in w1w2 and the number of ones in w3w4 is less than 1
6n. Then by the pigeonhole principle the number of

ones in both w1 and w2, and the number of zeros in both w3 and w4 is at least 1
12n. It means that we can

pick a subsequence of 1
12n zeros and then 1

12n ones from w4w1 and a symmetrical subsequence from w2w3.
Thus we get |p2p

′
2| ≥

1
3n.

In fact, a slightly stronger statement that the total length of p1p
′
1 and p2p

′
2 is 2

3n can be proved this way.
We conjecture the optimal bound for this value to be equal to n.

Even being proved, the bound of 1
2n in this conjecture would not improve the known bound for Conjecture

5. However, Conjecture 7 deals with palindromic subsequences of only two linear words, and thus seems
to be easier to handle. Considering four regular cuts instead of two should already improve the bound for
Conjecture 5.

3 Showing Asymptotic Tightness of Conjecture 4

In this section we present the main technical contribution of this paper, which is an infinite family of words
providing a better upper bound for Conjecture 4. In fact, we show a stronger result for words over an
arbitrary alphabet. Below we consider words over the alphabet {0, . . . , k − 1}, i.e. w ∈ {0, . . . , k − 1}∗.

Definition 9. We say that w′ is a consecutive subword of a word w if there exist words u, v with w = uw′v.
We call a word w ∈ {0, . . . , k − 1}∗ of type n if it is a consecutive subword of (0n1n . . . (k − 1)n)∗ or a

consecutive subword of ((k − 1)n . . . 1n0n)∗. In the first case we write w ∈ S′
n, in the second case we write

w ∈ S′′
n.

Furthermore, we define Sn = S′
n ∪ S′′

n.

Thus w ∈ S′
n if it is a concatenation of blocks (0n1n . . . (k− 1)n), where the first and the last blocks may

be shorter, and analogously for w ∈ S′′
n.

We denote by w the word we get when exchanging every letter ℓ by (k − 1 − ℓ), e.g. 01 . . . (k − 1) =
(k − 1)(k− 2) . . . 0. We see directly that w ∈ Sn if and only if w ∈ Sn. Furthermore, we have that w ∈ Sn if
and only if wR ∈ Sn.

Lemma 10. Let w1 ∈ Sn1 be a word of length ℓ1 and w2 ∈ Sn2 be a word of length ℓ2, where n1 > n2. Then,
the length of the longest common subsequence of w1 and w2 is at most ℓ1+ℓ2

k+1 + ℓ1
n2

n1
+ 2n2.

Proof. Let w be a common subsequence of w1 and w2 of length ℓ. We see that w is of the form ap1

1 ap2

2 . . . aps
s ,

where all aj ∈ {0, . . . , k − 1}, all pj are positive and aj 6= aj+1. We find directly that for i = 1, 2:

s ≤

⌈

ℓi − 1

ni

⌉

+ 1 ≤
ℓi − 1 + ni − 1

ni
+ 1 ≤

ℓi
ni

+ 2. (1)
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We consider now the minimal length of a consecutive subword of wi that contains a
pj

j , where pj > ni.

Thus, a
pj

j cannot be contained in one block of the form (0ni1ni . . . (k − 1)ni). This shows that the minimal

length of a consecutive subword of wi that contains a
pj

j is at least kni.

This generalizes for pj > nir and we find that each a
pj

j spans a subsequence of length at least kni(
⌈

pj

ni

⌉

−

1) ≥ k(pj − ni) in wi. Thus, we find ℓi ≥
∑s

j=1 k(pj − ni). This gives in total

ℓ =
s

∑

j=1

pj ≤
ℓi
k
+ sni. (2)

By combining (1) and (2) we find

ℓ ≤
ℓ2
k

+ (
ℓ1
n1

+ 2)n2. (3)

Furthermore, we find directly that ℓ ≤ ℓ1. This gives in total

k

k + 1
ℓ ≤

ℓ2
k + 1

+ ℓ1
kn2

(k + 1)n1
+

2k

k + 1
n2 ≤

ℓ2
k + 1

+ ℓ1
n2

n1
+ 2n2

1

k + 1
ℓ ≤

ℓ1
k + 1

,

and by adding these inequalities, we find

ℓ ≤
ℓ1 + ℓ2
k + 1

+ ℓ1
n2

n1
+ 2n2.

We think of ℓ1+ℓ2
k+1 in the bound above as the “main term”. Therefore, we need that n2

n1
is small. The

remaining term origins from boundary phenomena due to incomplete blocks. We note that this “main term”
is indeed sharp for large ℓ1, ℓ2, when

n1

n2
is integer and kℓ1 = ℓ2 as the following example shows.

Example 11. We consider n1 = pn2, with p integer, and w1 = (0n11n1 . . . (k−1)n1)ℓn2 , w2 = (0n21n2 . . . (k−
1)n2)kℓn1 = ((0n21n2 . . . (k − 1)n2)kp)ℓn2 . One finds that in1 is a subsequence of (0n21n2)p and thus, w1 is a

subsequence of w2. This gives directly |w1| = kn1ℓn2, |w2| = kn2kℓn1 = k|w1| and |w| = |w1| =
|w1|+|w2|

k+1 .

For the following considerations we will need a generalization of the notion of antipalindromes to the case
of non-binary alphabet. One natural version would be to say that w is an antipalindrome if w and wR differ
at every position. However, we work with a stronger notion, which still provides an interesting bound.

Definition 12. We call a word w ∈ {0, . . . , k − 1}∗ a strong antipalindrome if w = wR.

Theorem 13. For every ε > 0 there exists a circular word over the alphabet {0, . . . , k − 1} with equal
number of 0’s, 1’s, . . ., (k − 1)’s (n occurences of each letter) such that any palindromic and any strongly
antipalindromic subsequence of it is of length at most ( 2

k+1 + ε)kn.

Proof. Let us consider a circular word with a linear representationw1w2 . . . wr = w, where wj = (0p
j

1p
j

. . . (k−

1)p
j

)p
r−j

. We see directly that |wj | = kpr and, thus, kn := |w| = krpr. Furthermore, we have wj ∈ Spj .
We only work in the palindromic case from now on, but the same reasoning also holds in the case of

strong antipalindromes.
Let vvR be a palindromic subsequence of even length. Thus, we find that v is a subsequence of the

linear word u′
1wi1wi2 . . . wiau2 and vR is a subsequence of the linear word u′

2wj1wj2 . . . wjbu1, where u1u
′
1 =

wi0 , u2u
′
2 = wj0 and ik 6= jℓ for all 0 ≤ i ≤ a, 0 ≤ ℓ ≤ b.

This shows that v is a common subsequence of u′
1wi1wi2 . . . wiau2 and

uR
1 w

R
jb
. . . wR

j1
u′R
2 . By removing the parts of v that belong to the boundary blocks ui we get v that is a

common subsequence of wi1wi2 . . . wia and wR
jb
. . . wR

j1
, where

|v| − |v′| ≤ |wi0 |+ |wj0 | = 2kpr.
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From now on, we only work with v′. We can rewrite v′ as a concatenation of at most (a+ b − 1) blocks

vi, where each vi is a common subsequence of some w
(i)
1 ∈ Spj1(i) and w

(i)
2 ∈ Spj2(i) where j1(i) 6= j2(i).

Furthermore, we have a+ b ≤ r and

∑

i

|w
(i)
1 | = akpr

∑

i

|w
(i)
2 | = bkpr.

By using Lemma 10 we find that

|v′| =
∑

i

|vi|

≤
∑

i

( |w
(i)
1 |+ |w

(i)
2 |

k + 1
+

(|w
(i)
1 |+ |w

(i)
2 |)

p
+ 2pr−1

)

≤
|w|

k + 1
+

|w|

p
+

2|w|

kp
.

This gives in total (together with the bound on |v| − |v′|)

|vvR| ≤
2|w|

k + 1
+ |w|

(

4

p
+

4

r

)

.

Thus, choosing p = r ≥ 8
ε finishes the proof.

The trivial lower bound is 1
k . For palindromes, this can be seen immediately. For strong antipalindromes

the case for k odd works very similarly: We see that (k − 1)/2 = (k − 1)/2 and the word ((k − 1)/2)|w|/k is
a strongly antipalindromic subsequence of length |w|/k. The case k is even slightly more complicated but
can be dealt with in the same way as k = 2.

Theorem 13 deserves some remarks. First, it is interesting that the family of words constructed in the
theorem provides the same bound for both palindromic and strongly antipalindromic subsequences. Second,
it provides a generalization of the palindromic and strongly antipalindromic conjectures to the case of an
alphabet of more than two letters. These conjectures also remain open.

Finally, for any ε > 0, we find that the bound 2n
k+1+ε holds almost surely for large n in the case when we

choose every letter independently and uniformly in {0, . . . , k − 1}.
To see this, we fix a subsequence of length n

k+1+ε and call it w0. Then we try to find w0, w0, w
R
0 or w0

R as
a subsequence of the remaining word w1. However, any letter in w1 is chosen independently and uniformly.
Therefore, it takes on average k letters until one finds one specific letter. By the law of large numbers, the
number of letters we have to read in a string of independent and uniformly chosen letters to find a specific
subsequence of length ℓ is asymptotically normal distributed with mean ℓk and variance αℓ for some α > 0.
By the Chebyshev inequality, we find that w0 (or any of the mentioned forms above) appears in w1 almost
surely for large n as |w1| = (k + ε)|w0|.

4 Linear Words

The minimum length of the longest palindromic/antipalindromic subsequence in the class of all linear binary
words with n letters can be easily computed. However, for some restricted classes of words their behavior
is more complicated. One of the simplest restrictions is to forbid some number of consecutive equal letters.
The following proposition is then not hard to prove. It suggests some progress for Conjectures 1 and 4 for
binary words without three consecutive equal letters.

Proposition 14. Every binary word of length n without three consecutive equal letters has a palindromic
subsequence of length at least 2

3 (n− 2). The same is true for an antipalindromic subsequence.
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Proof. Let w be a binary word without three consecutive equal letters. Consider the representation w =
w1w2 . . . wm such that each wi is composed of only zeros or only ones, and two consecutive words wi and
wi+1 consist of different letters. Then the length of each wi is at most 2. Assume that m is even (otherwise
remove wm). Then one can pick at least one letter from each pair wi, wm−i+1 (or two letters if both wi,
wm−i+1 are of the same length) and all the letters from wm+1

2
in such a way that the resulting subsequence

is a palindrome. This way we get a palindromic subsequence of length at least 2
3 (n − 2). The same proof

can be done for antipalindromic subsequences.

For the antipalindromic part, one can take the word (001)i to see tightness (we conjecture the bound
2
3n to be tight for words with equal number of zeros and ones, but we could not find an example providing
tightness). For palindromic subsequences we conjecture a stronger bound.

Conjecture 15. Every binary word of length n without three consecutive equal letters has a palindromic
subsequence of length at least 3

4 (n− 2).

We checked this conjecture up to n = 30. The worst known cases are provided by the word (001)i(011)i,
showing the tightness of the conjectured bound.

Note that every binary word without two consecutive equal letters is a sequence of alternating zeros and
ones, and thus has a palindromic subsequence of length n − 1, where n is the length of the word. For a
three-letter alphabet it is not hard to prove the following.

Proposition 16. Let w be a word of length n over a three-letter alphabet. If w has no two consecutive equal
letters, then it has a palindromic subsequence of length at least 1

2 (n− 1).

Proof. Assume that the number of letters in w is even (otherwise, remove the last letter). Let w =
w1w2 . . . wm where wi is a word of length 2. Each such word contains two different letters. Then for
each pair wi, wm−i+1 there exists a letter present in both words. By taking such a letter from every pair,
we get a palindrome of length m = 1

2 (n− 1).

Based on these observations and computer experiments, we formulate the following conjecture.

Conjecture 17. Let w be a word of length n over an alphabet of size k, k ≥ 2. If w has no two consecutive
equal letters, then it has a palindromic subsequence of length at least 1

k−1 (n− 1).

We checked this conjecture up to n = 21 for k = 4 and n = 18 for k = 5 by computer. A critical
example for this conjecture is provided by a word which is a concatenation of the word (a1a2)

i and words
(aℓ+1aℓ)

i−1aℓ+1 for 1 < ℓ < k − 1. This word shows that the conjectured bound is tight.

5 Further Work

There are some questions besides the conjectures above that are worth mentioning. First, there is no known
reduction between the palindromic and antipalindromic conjectures. Thus, it is interesting to know whether
a bound for one of them implies some bound for the other one. Second, no non-trivial relation is known for
the bounds for the same conjecture but different size of alphabets.
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