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Abstract. Autonomous robotics and artificial intelligence techniques can be used
to support human personnel in the event of critical incidents. These incidents
can pose great danger to human life. Some examples of such assistance include:
multi-robot surveying of the scene; collection of sensor data and scene imagery,
real-time risk assessment and analysis; object identification and anomaly detec-
tion; and retrieval of relevant supporting documentation such as standard operat-
ing procedures (SOPs). These incidents, although often rare, can involve chem-
ical, biological, radiological/nuclear or explosive (CBRNE) substances and can
be of high consequence. Real-world training and deployment of these systems
can be costly and sometimes not feasible. For this reason, we have developed a
realistic 3D model of a CBRNE scenario to act as a testbed for an initial set of
assisting Al tools that we have developed.'

1 Background and Related Research

We have developed a bespoke virtual environment (VE) model of a critical incident
using a state-of-the-art games engine. We use this model to test a range of assisting Al
technologies related to information gathering, real-time analytics and decision support.

We developed the VE with the core purpose of using it as a testbed for the develop-
ment of a range of investigation assisting Al tools. VEs have also been used to train first
responder personnel in near photo-realistic yet safe conditions. Chroust and Aumayr [2]
note that virtual reality can support training by allowing simulations of potential inci-
dents, as well as the consequences of various courses of action, in a realistic way. There
are virtual reality training systems which solely focus on CBRN disaster preparedness.
Some of these are outlined by Mossel et al. [9]. Other example uses of virtual worlds
include Second Life and Open Simulator [4,3].

CBRNE incident assessment is a critical task which poses significant risks and en-
dangers the lives of human investigators. For this reason, many research projects fo-
cus on the use of robots such as Micro Unmanned Aerial Vehicles (MUAV) to carry
out remote sensing in such hazardous environments [7,1]. Others can include CBRNE
mapping for first responders [6] and multi-robot reconnaissance for detection of threats
[12].
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2 A Virtual Testbed for Critical Incidents

We have developed and implemented a baseline set of decision support systems for
investigating critical incidents. In order to test these in an efficient and cost effective
manner, we have developed 3D world models of typical CBRNE incidents using a
physics-based game engine. These models include virtual representations of Robotic
Aerial Vehicles (RAVs).

After identifying the area of interest, multiple RAVs are deployed to survey the
scene. The RAVs, which are fitted with sensors and cameras, operate as a multi-agent
robot swarm and divide the work up between them. All information is relayed to a cen-
tral hub in which our Image Analysis module uses a Deep Neural Network (DNN) to
detect and identify relevant objects in images taken by RAV cameras. It also uses a
DNN to perform pixel-level semantic annotation of the terrain, to support subsequent
route-planning for Robotic Ground-based Vehicles (RGVs). Our Probabilistic Reason-
ing module assesses the likelihood of different threats, as information arrives from the
scene commander, survey images and sensor readings. Our Information Retrieval mod-
ule ranks documentation, using TF-IDF, by relevance to the incident. All interactions
are managed by our purpose-built JSON-based communications protocol, which is also
supported by real-world RAVs, cameras and sensor systems. This keeps the system
loosely coupled, and will support future testing in real-world environments.

This work was undertaken as part of a project called ROCSAFE (Remotely Op-
erated CBRNE Scene Assessment and Forensic Examination) and this demonstration
overview is based on Smyth et al. [14].

2.1 Modelling a Critical Incident Scenario

To facilitate the development and testing of our Al tools, we have designed, developed
and publicly released a VE [15] using the Unreal Engine (UE). This is a suite of tools
for creating photo-realistic simulations with accurate real-world physics. UE is open
source, scalable and supports plugins that allow the integration of RAVs and RGVs into
the environment. For this demonstration, we chose an operational scenario to model that
consists of a train carrying radioactive material in a rural setting. We used Microsoft’s
AirSim [13] plugin to model the RAVs. AirSim exposes various APIs to allow fine-grain
control of RAVs, RGVs and their associated components. We have replicated a number
of APIs from real-world RAV and RGV systems to facilitate the application of our Al
tools to real-world critical incident use-cases in the future, after firstly testing them in
the VE.

2.2 Communications

A secure purpose-built JSON-format protocol was developed for the communications
between subsystems. We used a RESTful API because of the fewer number of messages
at pre-defined intervals [11]. The communication protocol not only provides autonomy
to several vehicles but it is also flexible enough to integrate with various components
using different standards, protocols and data types. In this demonstration, we concen-
trate on RAVs. Since decision making may happen within each RAV’s single-board
computer, we have also facilitated direct communication between the RAVs.



2.3 Autonomous Surveying and Image Collection

Our multi-agent system supports the autonomous mapping of the virtual environment.
It involves discretizing a rectangular region of interest into a set of grid points. At each
point, the RAV records a number of images and metadata. Four bounding GPS coordi-
nates (corner points of a rectangle) can be passed in through a web-based user interface.

Our planning algorithm develops agent routes at a centralized source and distributes
the planned routes to each agent in the multi-agent system [16]. A greedy algorithm is
used in the current implementation to generate subsequent points in each agent’s path
by minimizing the distance each agent needs to travel to an unvisited grid point. Current
state-of-the-art multi-agent routing algorithms use hyper-heuristics, which out-perform
algorithms that use any individual heuristic [19]. We intend to integrate this approach
with learning algorithms such as Markov Decision Processes [18] in order to optimize
the agent routes in a stochastic environment, for-example where RAVs can fail and
battery usage may not be fully known.

2.4 TImage Processing and Scene Analysis

Our Central Decision Management (CDM) system uses the object labels predicted by
a deep neural network from images taken by the RAV cameras. Specifically, we fine-
tuned an object detection model Mask R-CNN [5] with our annotated synthetic images
that we collected from the virtual scene. Training on a synthetic dataset has been shown
to transfer well to real world data in self-driving cars [10] and object detection [17].

Fig. 1: Object identification from a virtual scene image.

Mask R-CNN is currently a state-of-the-art object detection deep model that de-
tects and localizes objects with bounding boxes and provides overlay instance segmen-
tation masks to show the contours of the objects within the boxes. Figure 1 shows
the identification of a train and a truck from our virtual scene. The objective of using
this detection algorithm is to highlight objects of interest within the scene to the crime
scene investigator’s attention. These models can detect objects even if they are overlap-
ping. The predicted labels that are produced are an input for our probabilistic reasoning
module. Currently, we are enhancing the performance of this deep learning model by



retraining/fine-tuning the network on other relevant datasets, for example, Object de-
Tection in Aerial (DOTA) images [20]. In addition, our plan is to also detect anomalies
in the scenes.

2.5 Reasoning and Information Retrieval

We have developed a probabilistic model in the BLOG language [8]. It synthesizes
data and reasons about the threats in the scene over time. The objective is to estimate
the probabilities of different broad categories of threat (chemical, biological, or radia-
tion/nuclear) and specific threat substances. This information affects the way a scene
is assessed. For example, a first responder with a hand-held instrument may initially
detect evidence of radiation in some regions of the scene. Subsequent RAV images
may then show damaged vegetation in those and other regions, which could be caused
by radiation or chemical substances. Another source of information could come from
RAVs dispatched with radiation sensors that fly low over those regions. Using keywords
that come from sources such as the object detection module, the probabilistic reasoning
module, and the crime scene investigators, the CDM retrieves documentation such as
standard operating procedures and guidance documents from a knowledge base. This
retrieval is done based on rankings (in order of relevance to the current situation). Elas-
tic Search and a previously-defined set of CBRNE synonyms are used for rankings.
The documents are re-ranked in real-time as new information becomes available from
various sources.
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