
ar
X

iv
:1

80
7.

09
70

5v
1

 [
cs

.L
G

]
 2

5
Ju

l 2
01

8

Limitations of the Lipschitz constant as a

defense against adversarial examples

Todd Huster, Cho-Yu Jason Chiang, and Ritu Chadha

Perspecta Labs, Basking Ridge, NJ 07920, USA.
thuster@perspectalabs.com

Abstract. Several recent papers have discussed utilizing Lipschitz con-
stants to limit the susceptibility of neural networks to adversarial exam-
ples. We analyze recently proposed methods for computing the Lipschitz
constant. We show that the Lipschitz constant may indeed enable ad-
versarially robust neural networks. However, the methods currently em-
ployed for computing it suffer from theoretical and practical limitations.
We argue that addressing this shortcoming is a promising direction for
future research into certified adversarial defenses.

Keywords: adversarial examples, Lipschitz constant

1 Introduction

Machine learning models, such as deep neural networks (DNNs), have been re-
markably successful in performing many tasks [5] [7] [9]. However, it has been
shown that they fail catastrophically when very small distortions are added
to normal data examples [6] [14]. These adversarial examples are easy to pro-
duce [6], transfer from one model to another [11] [15], and are very hard to
detect [2].

Many methods have been proposed to address this problem, but most have
been quickly overcome by new attacks [1] [3]. This cycle has happened regularly
enough that the burden of proof is on the defender that her or his defense will
hold up against future attacks. One promising approach to meet this burden is
to compute and optimize a certificate: a guarantee that no attack of a certain
magnitude can change the classifier’s decision for a large majority of examples.

In order to provide such a guarantee, one must be able to bound the possible
outputs for a region of input space. This can be done for the region around a
specific input [8] or by globally bounding the sensitivity of the function to shifts
on the input, i.e., the function’s Lipschitz constant [13] [16]. Once the output is
bounded for a given input region, one can check whether the class changes. If
not, there is no adversarial example in the region. If the class does change, the
model can alert the user or safety mechanisms to the possibility of manipulation.

We argue in this paper that despite the achievements reported in [13], Lipschitz-
based approaches suffer from some representational limitations that may prevent
them from achieving higher levels of performance and being applicable to more

http://arxiv.org/abs/1807.09705v1

2 Todd Huster et al.

complicated problems. We suggest that directly addressing these limitations may
lead to further gains in robustness.

This paper is organized as follows: Section 2 defines the Lipschitz constant
and shows that classifiers with strong Lipschitz-based guarantees exist. Section
3 describes a simple method for computing a Lipschitz constant for deep neural
networks, while Section 4 presents experimental and theoretical limitations for
this method. Section 5 describes an alternative method for computing a Lips-
chitz constant and presents some of its limitations. Finally, Section 6 presents
conclusions and a long term goal for future research.

2 Lipschitz Bounds

We now define the Lipschitz constant referenced throughout this paper.

Definition 1. Let a function f be called k-Lipschitz continuous if

∀x1, x2 ∈ X : dY (f(x1), f(x2)) ≤ kdX(x1, x2) (1)

where dX and dY are the metrics associated with vector spaces X and Y ,

respectively.

Loosely speaking, a Lipschitz constant k is a bound on the slope of f : if
the input changes by ǫ, the output changes by at most kǫ. If there is no value
k̂ where f is k̂-Lipschitz continuous and k̂ < k, then we say k is the minimal
Lipschitz constant. In this paper, we restrict our analysis to Minkowski Lp spaces
with distance metric ‖ · ‖p. We now show that global Lipschitz constants can in
principle be used to provide certificates far exceeding the current state-of-the-art,
and thus are worthy of further development.

Proposition 1. Let D be a dataset D =
{

(xi, yi) | i = 1, ...,m, xi ∈ R
d, yi ∈

{−1, 1}
}

where xi 6= xj for yi 6= yj. Let c be a positive scalar such that

∀i, j : yi 6= yj → ||xi − xj ||p > c (2)

for p ≥ 1. There exists a 2

c
-Lipschitz function f : X → R where ∀i : sign(f(xi+

δ)) = yi for ||δ||p < c
2
.

Proof. We relegate the full proof to appendix A.1, but we define a function
meeting the criteria of the proposition that can be constructed for any dataset:

f(x) =

1− 2

c
||x− x+||p if ||x− x+||p < c

2

−1 + 2

c
||x− x−||p if ||x− x−||p < c

2

0 otherwise

(3)

where x+ and x− are the closest vectors to x in D with y = 1 and y = −1,
respectively.

Limitations of the Lipschitz constant 3

The function f described above shows that the Lipschitz method can be
used to provide a robustness guarantee against any perturbation of magnitude
less than c

2
. This can be extended to a multi-class setting in a straightforward

manner by using a set of one vs. all classifiers. Table 1 shows the distance to
the closest out-of-class example for the 95th percentile of samples; i.e., 95%
of samples are at least c away from the nearest neighbor of a different class.
Proposition 1 implies the existence of a classifier that is provably robust for
95% of samples against perturbations of magnitude c

2
. This bound would far

exceed the certifications offered by current methods, i.e., [8] [13] [16], and even
the (non-certified) adversarial performance of [10].

Table 1. Distances to closest out-of-class example, 95th percentile.

Metric MNIST CIFAR-10

L1 29.4 170.8
L2 4.06 4.58
L∞ 0.980 0.392

It is important to note that the existence of a c
2
-Lipschitz function in Propo-

sition 1 does not say anything about how easy it is to learn such a function
from examples that generalizes to new ones. Indeed, the function described in
the proof is likely to generalize poorly. However, we argue that current meth-
ods for optimizing the Lipschitz constant of a neural network suffer much more
from underfitting than overfitting: training and validation certificates tend to
be similar, and adding model capacity and training iterations do not appear to
materially improve the training certificates. This suggests that we need more
powerful models. The remainder of this paper is focused on how one might go
about developing more powerful models.

3 Atomic Lipschitz Constants

The simplest method for constructing a Lipschitz constant for a neural network
composes the Lipschitz constants of atomic components. If f1 and f2 are k1-
and k2-Lipschitz continuous functions, respectively, and f(x) = f2(f1(x)), then
f is k-Lipschitz continuous where k = k1k2. Applying this recursively provides
a bound for an arbitrary neural network.

For many components, we can compute the minimal Lipschitz constant ex-
actly. For linear operators, lW,b(x) = Wx+ b, the minimal Lipschitz constant is
given by the matrix norm of W induced by Lp:

‖W‖p = sup
x 6=0

‖Wx‖p
‖x‖p

(4)

4 Todd Huster et al.

For p = ∞, this is equivalent to the largest magnitude row of W :

‖W‖∞ = max
wi∈W

‖wi‖1 (5)

The L2 norm of W is known as its spectral norm and is equivalent to its
largest singular value. The element-wise ReLU function ReLU(x) = max(x, 0)
has a Lipschitz constant of 1 regardless of the choice of p. Therefore, for a
neural network f composed of n linear operators lW1,b2 , ..., lWn,bn , and ReLUs,
a Lipschitz constant k is provided by

k =
n
∏

i=1

‖Wi‖p (6)

Several recent papers have utilized this concept or an extension of it to addi-
tional layer types. [14] uses it to analyze the theoretical sensitivity of deep neural
networks. [4] and [12] enforce constraints on the singular values of matrices as
a way of increasing robustness to existing attacks. Finally, [16] penalizes the
spectral norms of matrices and uses equation 6 to compute a Lipschitz constant
for the network.

4 Limitations of Atomic Lipschitz Constants

One might surmise that this approach can solve the problem of adversarial ex-
amples: compose enough layers together with the right balance of objectives,
overcoming whatever optimization difficulties arise, and one can train classifiers
with high accuracy, guaranteed low variability, and improved robustness to at-
tacks. Unfortunately, this does not turn out to be the case, as we will show first
experimentally and then theoretically.

4.1 Experimental Limitations

First, we can observe the limits of this technique in a shallow setting. We train
a two layer fully connected neural network with 500 hidden units f = lW2,b2 ◦
ReLU ◦ lW1,b1 on the MNIST dataset. We penalize ‖W1‖p‖W2‖p with weight λp.
We denote the score for class i as fi(x) and the computed Lipschitz constant of
the difference between fi(x) and fj(x) as kij . We certify the network for example
x with correct class i against a perturbation of magnitude ǫ by verifying that
fi(x) − fj(x) − kijǫ > 0 for i 6= j.

Figures 1 (a) and (b) show results for L∞ and L2, respectively. In both cases,
adding a penalty provides a larger region of certified robustness, but increasing
the penalty hurts performance on unperturbed data and eventually ceases to
improve the certified region. This was true for both test and training (not shown)
data. This level of certification is considerably weaker than our theoretical limit
from Proposition 1.

Limitations of the Lipschitz constant 5

There also does not appear to be much certification benefit to adding more
layers. We extended the methodology to multi-layer networks and show the re-
sults in figures 1 (c) and (d). Using the λ∞ penalty proved difficult to optimize
for deeper networks. The λ2 penalty was more successful, but only saw a mild
improvement over the shallow model. The results in (d) also compare favorably
to those of [16], which uses a 4 layer convolutional network.

0 0.05 0.1 0.15 0.2

|| ||

0

0.2

0.4

0.6

0.8

1

M
ax

 E
rr

or

(a)

=0

=0.005

=0.02

=0.05

=0.2

0 0.5 1 1.5 2

|| ||
2

0

0.2

0.4

0.6

0.8

1
(b)

2
=0

2
=20

2
=100

2
=200

2
=500

0 0.05 0.1 0.15 0.2

|| ||

0

0.2

0.4

0.6

0.8

1
(c)

2 Layer
3 Layer
4 Layer

0 0.5 1 1.5 2

|| ||
2

0

0.2

0.4

0.6

0.8

1
(d)

2 Layer
3 Layer
4 Layer

Fig. 1. Experimental results from atomic Lipschitz penalties. On the left, the L∞ norm
is used for both the perturbation and the penalty, while on the right, L2 is used

4.2 Theoretical Limitations

We now consider the set of neural networks with a given atomic Lipschitz bound
and the functions it can compute. This set of functions is important because it
limits how well a neural network can split a dataset with particular margins,
and thus how strong the certificate can be.

Definition 2. Let Ap
k be the set of neural networks with an atomic Lipschitz

bound of k in Lp space:

Ap
k ,

{

lWn,bn ◦ · · · ◦ReLU ◦ lW1,b1 |
∏

i

‖Wi‖p ≤ k, n ≥ 2
}

(7)

We focus our analysis here on L∞ space. To show the limitations of A∞
k ,

consider the simple 1-Lipschitz function f(x) = |x|. Expressing f with ReLU’s
and linear units is simple exercise, shown in figure 2. However, since

∥

∥

[

1 −1
] ∥

∥

∞

∥

∥

∥

∥

∥

[

1
1

]

∥

∥

∥

∥

∥

∞

= 2, (8)

the neural network in figure 2 is a member of A∞
2 , but not A∞

1 . This is only
one possible implementation of |x|, but as we will show, the atomic component
method cannot express this function with a Lipschitz bound lower than 2, and
the situation gets worse as more non-linear variations are added.

We now provide two definitions that will help delineate the functions that
the neural networks in A∞

k can compute.

6 Todd Huster et al.

Fig. 2. The absolute value function (left) and a neural network that implements it
(right)

Definition 3. For a function f : R → R, let the total variation be defined as

V b
a (f) , sup

T∈T

∑

ti∈T

|f(ti)− f(ti−1)| (9)

where T is the set of partitions of the interval [a, b].

The total variation captures how much a function changes over its entire
domain, which we will use on the gradients of neural networks. V ∞

−∞ is finite for
neural network gradients, as the gradient only changes when a ReLU switches
states, and this can only happen a finite number of times for finite networks.
Clearly, for the slope of the absolute value function, this quantity is 2: the slope
changes from -1 to 1 at x = 0.

Definition 4. For a function f : R → R, define a quantity

I(f) , V ∞
−∞(f) + |f(∞)|+ |f(−∞)| (10)

and call it the intrinsic variability of f .

As we will show, the intrinsic variability is a quantity that is nonexpansive
under the ReLU operation. The intrinsic variability the slope of the absolute
value function is 4: we add the magnitude of the slopes at the extreme points,
1 in each case, to the total variation of 2. We now begin a set of proofs to show
that A∞

k is limited in the functions it can approximate. This limit does not come
from the Lipschitz constant of a function f , but by the intrinsic variability of its
derivative, f ′.

Lemma 1. For a linear combination of functions f(x) =
∑

iwifi(x),

I(f ′) ≤
∑

i

|wi|I(f
′
i). (11)

Proof. Proof is relegated to appendix A.2

Definition 5. Let a function f : R → R be called eventually constant if

∃t− ∈ R, f ′(t) = f ′(t−), t ≤ t− (12)

∃t+ ∈ R, f ′(t) = f ′(t+), t ≥ t+ (13)

Limitations of the Lipschitz constant 7

Lemma 2. Let f(t) be a function where f ′(t) is eventually constant. For the

ReLU activation function g(t) = max(f(t), 0),

I(g′) ≤ I(f ′) (14)

Proof. Proof is relegated to appendix A.3

Theorem 1. Let f ∈ A∞
k be a scalar-valued function f : Rd → R.

Let hW0,b0 = f ◦ lW0,b0 where W0 ∈ R
d×1, b0 ∈ R

d and ‖W0‖∞ = 1. For any

selection of W0 and b0,

I(h′
W0,b0

) ≤ 2k. (15)

Proof. Proof is relegated to appendix A.4

A function in A∞
k has a hard limit on the intrinsic variability of its slope along

a line through its input space. If we try to learn the absolute value function while
penalizing the bound k, we will inevitably end up with training objectives that
are in direct competition with one another. One can imagine more difficult cases
where there is some oscillation in the data manifold and the bounds deteriorate
further: for instance sin(x) is also 1-Lipschitz, but can only be approximated
with arbitrarily small error by a member of A∞

∞. While this limit is specific to
A∞

k , since ‖W‖2 ≤ ‖W‖∞, it also provides a limit to A2
k.

5 Paired-layer Lipschitz Constants and Their Limitations

We have shown the limitations of the atomic bounding method both experimen-
tally and theoretically, so naturally we look for other approaches to bounding
the Lipschitz constant of neural network layers. A fairly successful approach was
given by [13]. [13] presents a method for bounding a fully connected neural
network with one hidden layer and ReLU activations, which yielded impressive
performance on the MNIST dataset. This approach optimizes the weights of the
two layers in concert, so we call it the paired-layer approach. The paper does not
attempt to extend the method to deeper neural networks, but it can be done in
a relatively straightforward fashion.

5.1 Certifying a Two-layer Neural Network

Ignoring biases for notational convenience, a two-layer neural network with
weights W1 and W2 can be expressed

f(x) = W2diag(s)W1x (16)

where s = W1x > 0. We consider a single output, although extending to a multi-
class setting is straightforward. If s were fixed, such a network would be linear
with Lipschitz constant ‖W2diag(s)W1‖p. [13] accounts for a changeable s by

8 Todd Huster et al.

finding the assignment of s that maximizes the L∞ Lipschitz constant and using
this as a bound for the real Lipschitz constant:

k ≤ max
s∈{0,1}d

‖W2diag(s)W1‖∞ (17)

They convert this problem to a mixed integer quadratic program and bound
it in a tractable and differential manner using semi-definite programming, the
details of which are explained in [13]. We can add a penalty on this quantity
to the objective function to find a model with relatively high accuracy and low
Lipschitz constant. We did not have access to the training procedure developed
by [13], but we were able to closely replicate their results on MNIST and compare
them to the atomic bounding approach, shown in figure 3 (a).

0 0.05 0.1 0.15 0.2

|| ||

0

0.2

0.4

0.6

0.8

1

M
ax

 E
rr

or

(a)

Paired-Layer
=0.005

=0.02

=0.05

=0.2

-1 -0.5 0 0.5 1

t

-0.4

-0.2

0

0.2

0.4

0.6

f(
w

0
t)

/k

(b)

Paired Layer, IV/k=2.10
=0.005, IV/k=0.58

=0.02, IV/k=0.76

=0.05, IV/k=0.84

=0.2, IV/k=0.99

Fig. 3. (a) Results comparing penalizing the atomic Lipschitz bound and the paired-
layer bound (b) Neural network outputs along the line w0t and their intrinsic varibili-
ties. Values are scaled by the given Lipschitz constant

5.2 Theoretical Benefits and Limitations of Paired-layer Approach

Figure 3 shows that there are practical benefits to the paired-layer approach, and
we can also show a corresponding increase in expressive power. Similar to Ap

k,
we define a set of neural networks Mk, although we will restrict the definition
to 2 layer networks in L∞ space:

Definition 6. Let Mk be the set of two-layer neural networks with a paired-

layer Lipschitz bound of k in L∞ space:

Mk ,

{

lW2,a2
◦ReLU ◦ lW1,a1

| max
s∈{0,1}d

‖W2diag(s)W1‖∞ ≤ k
}

(18)

Limitations of the Lipschitz constant 9

Mk can express functions that A∞
k cannot. For example, we can apply the

paired-layer method to the neural network in figure 2 by enumerating the differ-
ent cases. In this case the bound is tight, meaning that the neural network is in
M1. From Theorem 1, we know that this function cannot be expressed by any
member of A∞

1 . It is easy to see that any two layer neural network in A∞
k is also

in Mk, so we can say confidently that the paired-layer bounds are tighter than
atomic bounds.

This additional expressiveness is not merely academic. Figure 3 (b) shows
the output of the networks from (a) along a particular line in input space, scaled
by the given Lipschitz bound. The function learned by the paired-layer method
does in fact exhibit an intrinsic variability larger than 2k, meaning that function
cannot be represented by a network in A∞

k . This suggests that the gains in
performance may be coming from the increased expressiveness of the model
family.

It is still easy to construct functions for which the paired-layer bounds are
loose, however. Figure 4 shows a 1-Lipschitz function and a corresponding neural
network that is only inM2. The problem arises from the fact that the two hidden
units cannot both be on, but the quadratic programming problem in equation
17 implies that they can. For a 1-D problem, the bound essentially adds up
the magnitudes of the paths with positive weights and the paths with negative
weights and takes the maximum. A higher dimensional problem can be reduced
to a 1-D problem by considering arbitrary lines through the input space.

Fig. 4. A 1-Lipchitz function (left) and a neural network that implements it (right)

The expressive limitations of Mk are apparent when we consider its com-
ponents. Any neural network in Mk is a sum of combinations of the four basic
forms in figure 5, with various biases and slopes. The sum of the slope mag-
nitudes from the positive paths can be no greater than k, and likewise for the
negative paths. Each form has a characteristic way of affecting the slope at the
extremes and changing the slope. For instance form (a) adds a positive slope
at +∞ as well as a positive change in f ′. From here we can see that there is
still a connection between the total variation and extreme values of f ′ and the
bound k. While the paired-layer bounds are better than the atomic ones, they
still become arbitrarily bad for e.g., oscillating functions.

10 Todd Huster et al.

Fig. 5. The four forms of components of a two layer neural network, and their distin-
guishing characteristics

6 Conclusions

We have presented a case that existing methods for computing a Lipschitz con-
stant of a neural network suffer from representational limitations that may be
preventing them from considerably stronger robustness guarantees against ad-
versarial examples. Addressing these limitations should enable models that can,
at a minimum, exhibit strong guarantees for training data and hopefully extend
these to out-of-sample data. Ideally, we envision universal Lipschitz networks : a
family of neural networks that can represent an arbitrary k-Lipschitz function
with a tight bound. The development of such a family of models and meth-
ods for optimizing them carries the potential of extensive gains in adversarial
robustness.

Acknowledgement: This research was partially sponsored by the U.S. Army Re-
search Laboratory and was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views and conclusions con-
tained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Army Re-
search Laboratory or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation here on.

References

1. Athalye, A., Carlini, N., Wagner, D.A.: Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. CoRR abs/1802.00420
(2018)

2. Carlini, N., Wagner, D.A.: Adversarial examples are not easily detected: Bypassing
ten detection methods. In: AISec@CCS (2017)

3. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
2017 IEEE Symposium on Security and Privacy (SP) pp. 39–57 (2017)

4. Cissé, M., Bojanowski, P., Grave, E., Dauphin, Y., Usunier, N.: Parseval networks:
Improving robustness to adversarial examples. In: ICML (2017)

5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.:
Natural language processing (almost) from scratch. Journal of Machine Learning
Research 12, 2493–2537 (2011)

Limitations of the Lipschitz constant 11

6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. CoRR abs/1412.6572 (2014)

7. Hinton, G.E., Deng, L., Yu, D., Dahl, G.E., rahman Mohamed, A., Jaitly, N.,
Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural
networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine 29, 82–97 (2012)

8. Kolter, J.Z., Wong, E.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. CoRR abs/1711.00851 (2017)

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Wein-
berger (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–
1105. Curran Associates, Inc. (2012)

10. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. CoRR abs/1706.06083 (2017)

11. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.:
Practical black-box attacks against machine learning. In: AsiaCCS (2017)

12. Qian, H., Wegman, M.N.: L2-nonexpansive neural networks. CoRR
abs/1802.07896 (2018)

13. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial
examples. CoRR abs/1801.09344 (2018)

14. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)

15. Tramèr, F., Papernot, N., Goodfellow, I.J., Boneh, D., McDaniel, P.D.: The space
of transferable adversarial examples. CoRR abs/1704.03453 (2017)

16. Tsuzuku, Y., Sato, I., Sugiyama, M.: Lipschitz-margin training: Scalable certifica-
tion of perturbation invariance for deep neural networks. CoRR abs/1802.04034
(2018)

A Proofs

A.1 Proof of Proposition 1

Proof. Consider the function

f(x) =

1− 2

c
||x− x+||p if ||x− x+||p < c

2

−1 + 2

c
||x− x−||p if ||x− x−||p < c

2

0 otherwise

(19)

where x+ and x− are the closest vectors to x in D with y = 1 and y = −1,
respectively. Since ||x+−x−||p > c, the conditions are mutually exclusive. When
yi = 1 and ||δ||p < c

2
,

f(xi + δ) = 1−
2

c
||x+

i − x+ + δ||p ≥ 1−
2

c
||δ||p ≥ 0. (20)

The inverse is true for yi = −1, therefore sign(f(xi + δ)) = yi holds for all
i. f is continuous at the non-differentiable boundaries between the piecewise
conditions of f and the selections of x+ and x−. Therefore, it suffices to show

12 Todd Huster et al.

that each continuously differentiable piece is 2

c
-Lipschitz. Using Definition 1, we

must show

|f(x)− f(x+ δ)| ≤
2

c
||δ||p. (21)

For the first condition of f with a fixed x+, we get

∣

∣

∣

∣

∣

1−
2

c
||x− x+||p −

(

1−
2

c
||x+ δ − x+||p

)∣

∣

∣

∣

∣

≤
2

c
||δ||p (22)

2

c

∣

∣

∣
||x− x+||p − ||x+ δ − x+||p

∣

∣

∣
≤

2

c
||δ||p, (23)

which holds for p ≥ 1 due to the Minkowski inequality. The same holds for the
second condition. Since the third condition is constant, f(x) must be 2

c
-Lipschitz

and the proof is complete. ⊓⊔

A.2 Proof of Lemma 1

Proof. Using the chain rule, we get

f ′(t) =
∑

i

wif
′
i(t). (24)

The triangle inequality gives us the following two inequalities

|f ′(t)| =
∣

∣

∣

∑

i

wif
′
i(t)
∣

∣

∣
≤
∑

i

|wif
′
i(t)| =

∑

i

|wi||f
′
i(t)| (25)

|f ′(ti)− f ′(ti−1)| ≤
∑

i

|wif
′
i(ti)− wif

′
i(ti−1)| =

∑

i

|wi||f
′
i(ti)− f ′

i(ti−1)| (26)

Let Tf ′ be a maximal partition for V ∞
∞ (f ′), giving us

I(f ′) =
∑

ti∈Tf′

|f ′(ti)− f ′(ti−1)|+ |f ′(∞)|+ |f ′(−∞)| (27)

We complete the proof by substituting with (25) and (26) and reordering the
terms :

I(f ′) ≤
∑

i

|wi|
(

∑

ti∈Tf

|f ′
i(ti)− f ′

i(ti−1)|+ |f ′
i(∞)|+ |f ′

i(−∞)|
)

=
∑

i

|wi|I(f
′
i).

(28)

⊓⊔

Limitations of the Lipschitz constant 13

A.3 Proof of Lemma 2

Proof. Let [t−, t+] be an interval outside of which f ′(t) is constant. Assume that
f ′(t) > 0 for t ∈ [t−, t+]). In this case,

V
t+
t−

(g′) = V ∞
−∞(f ′). (29)

If f ′(−∞) > 0 then at some point t < t−, f(t) = 0 and g′ transitions from
f ′(−∞) to 0. Otherwise for t < t−, g

′(t) = f ′(t). Therefore,

V
t−
−∞(g′) + |g′(−∞)| = |f ′(−∞)| (30)

Similarly,
V ∞
t+

(g′) + |g′(∞)| = |f ′(∞)| (31)

Putting the different intervals together, we get

I(g′) = V
t−
−∞(g′) + |g′(−∞)|+ V ∞

t+
(g′) + |g′(∞)| + V

t+
t−

(g′) (32)

I(g′) = |f ′(−∞)|+ |f ′(∞)|+ V ∞
−∞(f ′) (33)

I(g′) ≤ I(f ′) (34)

So the statement holds when our assumption about f is met. To address cases
where f has negative values in [t−, t+], consider an interval (t1, t2) where g(t1) =
f(t1), g(t2) = f(t2), g(t) 6= f(t)fort1 < t < t2. We note that f ′(t1) < 0 and
f ′(t2) > 0. Since f ′ must transition from f ′(t1) to f ′(t2), over (t1, t2),

V t2
t1
(f ′) ≥ |f ′(t1)|+ |f ′(t2)|. (35)

Since g′ transitions from f ′(t1) to 0 to f ′(t2) over (t1, t2) so,

V t2
t1
(g′) = |f ′(t1)|+ |f ′(t2)|. (36)

Applying this to all such intervals gives us

V
t+
t−

(g′) ≤ V
t+
t−

(f ′) (37)

and therefore I(g′) ≤ I(f ′)
⊓⊔

A.4 Proof of Theorem 1

Proof. Combining the definition of hW0,b0 with Definition 2, we can see that
hW0,b0 = lWn,bn◦· · ·◦ReLU◦lW1,b1◦lW0,b0 and

∏n

i=0
‖Wi‖∞ ≤ k. We consider the

additional linear transform as the zeroth layer of a modified network. Consider
unit u in the zeroth layer as a function σ0,u(t). σ

′
0,j(t) is constant, with

σ′
0,u(t) = |w0

u,1| ≤ 1 (38)

14 Todd Huster et al.

where wi
u,v is element (u, v) of Wi. Therefore

V ∞
−∞(σ′

0,u) = 0 (39)

We also have ∀t, |σ′
0,u| = |w0

u,1|, so by Definition 4

I(σ′
0,u) = 2|w0

u,1| ≤ 2. (40)

We recursively define functions for each unit in layers 1 to n:

gi,v(t) =
∑

u

wi
u,vσi−1,u(t) (41)

σi,u(t) = max(gi,u(t), 0) (42)

Applying Lemma 2 and noting that a function composed of ReLU and linear
operators is eventually constant, we get

I(σ′
i,u) ≤ I(g′i,u) (43)

Applying Lemma 1, we get

I(g′i,v) ≤
∑

u

|wi
u,v|I(σi−1,u) (44)

Furthermore, we can say

max
v

I(g′i,v) ≤ ‖Wi‖∞max
u

I(g′i−1,u) (45)

Finally, we conclude the proof by recursively applying (45) on the base case in
(40) to yield

I(h′
W0,b0

) = I(g′n,1) ≤ 2

n
∏

i=1

‖Wi‖∞ ≤ 2k (46)

⊓⊔

	Limitations of the Lipschitz constant as a defense against adversarial examples

