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Federico Santa Maŕıa Technical University, Valparáıso, Chile
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Abstract. In-silico prediction of interactions between drugs and pro-
teins has become a crucial step in pharmaceutical sciences to reduce the
time and cost required for drug discovery and repositioning. Even if the
problem may be approached using standard recommendation algorithms,
the accurate prediction of unknown drug-target interactions has shown
to be very challenging due to the relatively small number of drugs with
information of their target proteins and viceversa. This issue has been
recently circumvent using regularization methods that actively exploit
prior knowledge regarding drug similarities and target similarities. In
this paper, we show that an additional improvement in terms of accu-
racy can be obtained using an ensemble approach which learns to com-
bine multiple regularized filters for prediction. Our experiments on eight
drug-protein interaction datasets show that most of the time this method
outperforms a single predictor and other recommender systems based on
multiple filters but not specialized to the drug-target interaction predic-
tion task.

Keywords: Drug-target interaction prediction ·
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1 Introduction

Discovering novel drug-target interactions (DTI) is one of the fundamental tasks
in pharmaceutical sciences [3]. As in-vivo experimental methods are extremely
costly and time-consuming, computational approaches capable to select the most
promising candidates for a further validation have become of great importance
in the last years [3,9]. From a machine learning perspective, a DTI problem can
be approached as a recommendation task, where for a given drug (or target) a
ranking of “expected” target proteins (or drugs) interactions is generated.

Similar to implicit recommendation tasks, in DTI problems, only sparse
information for interacting pairs is available. That means one cannot assume
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non-interacting pairs as truly negatives, because some of them correspond to
interacting pairs not discovered yet. DTI prediction is also challenging because
publicly available databases contain a extremely small amount of validated pairs
[8]. Even if sparsity is also a challenging feature of other recommendation tasks,
most settings assume a minimum of s > 1 annotations exist for each user and
item. This context suggests that the use of knowledge beyond the known inter-
actions may be of crucial importance to successfully address DTI problems.

Contribution. In this paper, we investigate the use of AdaBoost for DTI. Rely-
ing on a probabilistic formulation for DTI, it is possible to obtain a principled
ensemble algorithm that learns to combine predictions to produce more accurate
recommendations. This idea is in line with previous contributions in the collab-
orative filtering and DTI literature [12,13]. However, up to our knowledge, we
are the first to study the use of Adaboost to build an ensemble of collaborative
filters for DTI. Previous methods are based on other ensemble paradigms (e.g.
stacking [15]) without collaborative filters or do not employ DTI methods as
base learners (e.g. decision trees [10]). In a nutshell, our method consists in solv-
ing re-weighted versions on an objective function that has been successfully used
by NRLMF, a state-of-the-art method for DTI. Our experiments on standard
benchmarks show that, in general, the proposed method outperforms a single
predictor and an ensemble method not specialized for DTI.

The rest of this article is organized as follows. In Sect. 2 we formalize the DTI
problem and briefly discuss related work. In Sect. 3, we formulate our ensemble
method. In Sect. 4 we present experimental results that demonstrate the perfor-
mance of our algorithm on eight DTI datasets. Section 5 closes the article with
the conclusions and final remarks.

2 Problem Statement and Related Work

Problem Definition. Given a set of drugs D = {di}m
i=1 ⊂ D, a set of target

proteins T = {tj}n
j=1 ⊂ T and a binary matrix R∗ ∈ R

m×n where R∗
ij = 1 if

and only if drug di interact with target tj , a DTI problem consists in predicting
R∗ from a matrix R ∈ R

m×n where some interactions has been removed, that
is, Rij = 0 but R∗

ij = 1. This definition implies that the negative examples in R
are only implicit, in the sense that Rij = 0 can represent either an interacting
pair not yet discovered or a truly non-interacting pair. Besides the interaction
matrix R, similarity information regarding drugs and targets can be available.
This information is encoded into the form of similarity matrices S(d) ∈ R

m×m

and S(t) ∈ R
n×n where a high value S

(d)
kl (respectively S

(t)
kl ) represents a high

similarity between drugs dk and dl (respectively proteins tk and tl).

Related Work. Compared to more traditional recommendation tasks, DTI
problems are challenging because publicly available databases contains a very
small amount of validated pairs [8]. This context explains why many state of the
art methods rely on knowledge beyond the partially observed matrix R. Indeed,
many machine learning approaches integrating information on drug or target
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similarity have been investigated in the last years. In [5], Gönen proposed a
Bayesian matrix factorization model which encodes chemical similarity between
compounds and genomic similarity between proteins using kernels functions [11].
This allow to perform predictions for drugs/proteins without annotations (cold
start). Zheng proposed in [16] a matrix factorization approach able to accept
more than one similarity matrix over drugs, as well as over targets, and able
to automatically learn weights over the multiple similarity matrices in order
to fit the latent matrix factors. Cobanoglu et al. adapted in [2] a probabilistic
matrix factorization to DTI, demonstrating that this technique allowed to iden-
tify functionally similar drugs even in the absence of 3D shape similarity. More
recently, Liu et al. has extended in [9] logistic matrix factorization (LMF) [6] to
more actively exploit drug/target similarities. Neighborhood-based regularizers
are incorporated into the objective function in order to constraint the latent fac-
tors of similar drugs/targets to be similar. This method, referred to as NRLMF,
is shown to outperform state-of-the-art methods, including [5] and [16].

Aside matrix factorization techniques, some ensemble methods have been
used for DTI problems. One of them is DrugE-Rank [15], which trains multi-
ple similarity-based methods and use each output as feature to train a ranking
learner for DTI predictions (stacking ensemble). Another ensemble approach for
DTI is formulated in [10], where a boosting framework is utilized to combine
multiple features for drug-target pairs, using decision trees as base learners.

A Probabilistic Model for DTI. LMF and NRMLF rely on a probabilistic
model for DTI. LMF decomposes the interaction matrix R as the product R =
UV T of two latent matrices U ∈ R

m×r and V ∈ R
n×r. Each row of U , ui,

encodes a latent representation for drug di, whereas each row of V , vj encodes a
latent representation for protein tj . While standard matrix factorization methods
models the interaction between a drug di and target tj using a score sij = uiv

T
j ,

LMF models the probability of interaction pij for a pair (di, tj) using the model
pij = σ(sij), where σ(ξ) = exp(ξ)/(1 + exp(ξ)) is the sigmoid function. The
latent matrices U, V are learnt from data by maximizing the log-likelihood

�0(U, V ) =
∑

i,j

cRij log pij + (1 − Rij) log(1 − pij) − λd

2
‖U‖2F − λt

2
‖V ‖2F , (1)

where c ∈ R is a parameter controlling the relative importance of positive versus
negative examples and λ ∈ R is a regularization parameter enforcing sparsity
in the latent representations. Liu et al. [9] propose to regularize this objective
function in such a way that similar proteins/drugs obtain similar latent repre-
sentations. Let N(di) be the set of k1 nearest neighbours of drug di computed
according to the similarity matrix S(d) and N(tj) be the set of k2 nearest neigh-
bours of protein tj according to the similarity matrix S(t). The new objective
takes the form

�1(U, V ) = �0(U, V ) − α/2
∑

i,j
aij‖ui − uj‖22 − β/2

∑
i,j

bij‖vi − vj‖22 , (2)
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where aij = s
(d)
ij if dj ∈ N(di), aij = 0 if dj /∈ N(di), bij = s

(t)
ij if tj ∈ N(ti),

bij = 0 if tj /∈ N(ti) and α, β are new regularization parameters. The obtained
objective function is differentiable and can be optimized using gradient ascent.

3 Proposed Method

In this section we formulate an ensemble method specialized for DTI. Essentially,
we demonstrate that a principled way to combine DTI filters consists in solving
weighted versions of the objective function used by LMF or NRMLF.

Boosting Procedure. Let P : D × T → [0, 1] be the probability distribution
generating pairs (d, t) from D×T and Y (d, t) a binary random variable such that
Y (d, t) = 1 if (d, t) is an interacting pair and Y (d, t) = −1 otherwise. We cast the
problem of learning an ensemble F (d, t) of DTI filters as that of approximating
the logit of the interaction probability, i.e.,

F (d, t) = log
P (Y = 1|d, t)

1 − P (Y = 1|d, t)
= log P (Y = 1|d, t) − log P (Y = −1|d, t). (3)

It is well known in machine learning that a way to obtain a hypothesis of the
previous form consists in training a learner to minimize the following objective

J(F ) = E {Q(Y (d, t), F (d, t))|d, t} , (4)

where Q(Y (d, t), F (d, t)) = exp(−Y (d, t)F (d, t)) is known as the exponential
loss. To optimize (4) we can adopt the stage-wise approach characteristic of
boosting algorithms, i.e. we can implement F using an additive model of the
form F (k) =

∑k
� f (�), where each f (�) : D×T → [−1, 1] is a DTI filter, and train

f (1), f (2), . . . one after the other to improve the value of the objective function
J(F ). It is not difficult to show indeed (see e.g. [4]) that taking a gradient descent
step to expand F (k) =

∑k
�=1 f (�) at a given iteration k correspond to choose

f
(k+1)
∗ (d, t) =

1
2

log
P (k)(Y = 1|d, t)

(1 − P (k)(Y = 1|d, t))
, (5)

where P (k)(Y = 1) = W (k)(d, t)P (Y (d, t) = 1) and

W (k)(d, t) ∝ exp(−Y (d, t)F (k)(d, t)), (6)

represents a weighting distribution enforcing the hypothesis f (k+1) built at step
k of the boosting procedure to focus on drug-target pairs (d, t) that the ensemble
F (k) has incorrectly identified or has identified with a small “margin” η(d, t) =
Y (d, t)F (k)(d, t). In order to implement the hypothesis in (5), we can first train
a probabilistic classifier P̂ (k)(d, t) to approximate P (k)(Y = 1|d, t) and then set
the k + 1-th filter in the ensemble to be

f (k+1)(d, t) =
1
2

log
P̂ (k)(d, t)

(1 − P̂ (k)(d, t))
. (7)
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Now, a method commonly used in machine learning to approximate a distri-
bution q(ξ) from a model q̂(ξ) consists in minimizing the so-called cross-entropy
loss J(q̂, q) = −q(ξ) log q̂(ξ)−(1−q(ξ)) log(1− q̂(ξ)) on a set of training examples
distributed according to q(ξ). We can obtain examples distributed according to
our target distribution P (k)(Y = 1|d, t) from the interaction matrix R by defin-
ing R

(k)
ij = W (k)(di, tj)Rij . The probabilistic model P̂ (k)(d, t) at iteration k can

thus be trained to minimize

J (k) = −
∑

i,j
R

(k)
ij log P̂ (k)(di, tj) + (1 − R

(k)
ij ) log(1 − P̂ (k)(di, tj)), (8)

= −
∑

i,j
W

(k)
ij

(
Rij log P̂

(k)
ij + (1 − Rij) log(1 − P̂

(k)
ij )

)
,

where W
(k)
ij = W (k)(di, tj) and P̂

(k)
ij = P̂ (k)(di, tj).

Base Learner. Note that if W
(k)
ij ∝ 1∀i, j Eq. (8) is exactly the objective

function employed by NRLMF, except by the constant c, controlling the rela-
tive weight of the positive examples, and the regularization terms. That means
that a principled method to combine DTI filters correspond to solve re-weighted
versions of NRLMF objectives at each iteration, where the weights for each
drug-target pair are iteratively updated using Eq. (6). It is hence natural to
adopt the probabilistic model used by NRLMF to implement P̂

(k)
ij , that is, set

P̂ (k)(di, tj) = σ(uk
i (vk

j )T ) where {u
(k)
i }i, {v

(k)
j }j correspond to new embeddings

for drugs {di}i and targets {tj}j . An advantage of this decision is that we can
rely on proven methods to fit probabilistic interaction models on DTI data. For
instance, we can easily adapt the alternated gradient method employed in [9] to
optimize (8). The required derivatives are exactly those employed by standard
NRLMF, except that they become scaled by the weight distribution W

(k)
ij . We

can also easily incorporate the additional components in the objective functions
of NRLMF to each iteration of our boosting procedure in order to handle the
high sparsity of the interaction matrices available in typical DTI applications. In
practice, the regularization parameters can be tuned using model selection tech-
niques, eventually leading to the plain objective of (8) is this setting is optimal.

Algorithm. The proposed method is summarized as Algorithm 1. As mentioned
in the previous paragraph, step 4 of this method can be implemented using
alternated gradient descent. Note also that step 3 can be performed recursively
exploiting the additivity of F (k).

4 Experiments

We evaluate our method in the Yamanishi dataset collection1, a gold standard
for assessing DTI algorithms. It is composed of 4 prediction problems, namely,
enzymes, ion channels (IC), g-protein coupled receptors (GPCR) and nuclear
1 Yamanishi datasets are publicly available at http://web.kuicr.kyoto-u.ac.jp/supp/

yoshi/drugtarget/.

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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Algorithm 1. Proposed Algorithm (AdaNRLMF).

1 Initialize the ensemble as F (0) = 0;
2 for k ← 0 to K − 1 do
3 Compute the example weights as in Equation (6);

4 Implement the model P̂ (k)(di, tj) = σ(uk
i (vk

j )T ) where {u
(k)
i }, {v

(k)
j } are

new embeddings for drugs {di}i and the targets {tj}j obtained by training

NRMLF with example weights W
(k)
ij ;

5 Set f (k+1) as in Equation (5) and expand the ensemble

F (k+1) = F (k) + f (k+1);

6 end

7 Return an ensemble of K DTI filters F (K).

receptors (NR) [14], corresponding to different types of proteins. We also con-
sider an updated version of these four datasets, introduced in [7], in which more
recently discovered drug-target interactions have been included. As usual, we
adopt the area under precision recall curve (AUPR) as evaluation metric. This
score is preferred over other information retrieval metrics in DTI studies as it
illustrates better the differences between algorithms where there are significantly
more negative than positive examples.

We compare our method2 with NRLMF [9], a state-of-the-art method for
DTI, and AdaMF [13], an ensemble algorithm for recommendations which is not
specialized for DTI. In order to select the optimal parameters for NRLMF, we
used a stratified cross-validation scheme. A train/test split is first obtained by
randomly selecting 10% of positive and negative interactions for testing and 90%
for training. Parameter selection is then performed using 10-fold stratified cross-
validation on the resulting training set. That is, the training data is further split
into 10 non-overlapping blocks. Each block is retained once as the validation
data for evaluating the model that is trained on the remaining 9 blocks. The
different results are averaged to produce a single performance estimation. We
perform the optimal parameter selection in the same parameter space utilized
in NRLMF. In order to speed up the parameter selection process, we adopt the
Bayesian optimization method specifically devised for NRLMF in [1]. Once the
best parameters for a given train/test split have been determined, the model
is trained using the full training set and its output prediction is evaluated in
the test set. This stratified cross-validation scheme is repeated 10 times using
different train-test splits to obtain more significant results. The performance of
the proposed method as well as that of AdaMF are computed on the same train-
test splits used for NRMLF. However, in order to select parameters for these
methods, we adopt a more simple strategy. For AdaMF, we adopt the parame-
ters suggested by the authors in [13]. For our method, we apply simplifications.
First, we train each learner in the ensemble with exactly the same parameters,
since it allows to evaluate better the effect of our boosting approach (different

2 Our code is available at https://gitlab.com/cw cw/adanrlmf.

https://gitlab.com/cw_cw/adanrlmf
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parameters may introduce additional diversity in the ensemble not due to the
weight distribution adaptation). Second, since we are employing NRMLF as the
base learner, we set the base learner parameters to the same values selected for
this method in each train-test split. A more exhaustive parameter search may
have resulted in slightly better results.

Table 1 shows the average AUPR score obtained by the different methods
in each dataset. Standard deviations (computed among the 10 train-test splits)
are shown in parenthesis. We can see that the proposed method improves with
respect to NRLMF in 7 of 8 datasets, including all the augmented versions of
the Yamanishi collection. Our worst result is obtained in the Nuclear Receptors
dataset, which correspond to the DTI problem with less known annotations. This
may suggest that an ensemble of DTI filters require more positive examples than
a single filter to generalize well. Indeed, though the performance of our method
in the augmented variants is not always better than the performance observed
in the original datasets, the best relative improvements with respect to NRMLF
are achieved exactly in those cases, probably because they are more dense in
terms of available annotations. Our experiments show also that an ensemble of
collaborative filters not specialized for DTI can obtain quite poor results in this
type of task. We attribute this result to the fact that AdaMF does not employ
information beyond the interaction matrix to predict drug-target interactions,
while NRLMF and our method exploit specific knowledge regarding drug and
protein similarities to improve their predictions.

Table 1. Average AUPR over 10 trial of 10 fold stratified CV for Yamanishi dataset
and its extended version. AdaMF and AdaNRLMF were trained with 10 base learners.
Best results are in bold. The last column has the relative improvement of AdaNRLMF
with respect to NRLMF.

Dataset NRLMF AdaMF AdaNRLMF Relative
improvement

NR 0.774 (0.089) 0.089 (0.025) 0.693 (0.106) −10.47%

NR Ext. 0.613 (0.099) 0.182 (0.060) 0.632 (0.082) 3.09%

GPCR 0.739 (0.073) 0.112 (0.039) 0.785 (0.035) 6.22%

GPCR Ext. 0.800 (0.071) 0.538 (0.036) 0.870 (0.035) 8.75%

IC 0.899 (0.016) 0.423 (0.038) 0.943 (0.017) 4.89%

IC Ext. 0.889 (0.025) 0.562 (0.034) 0.942 (0.006) 6.92%

Enzyme 0.881 (0.013) 0.539 (0.030) 0.909 (0.011) 3.18%

Enzyme Ext. 0.753 (0.029) 0.488 (0.023) 0.816 (0.012) 8.37%

5 Conclusions

In this paper we have devised an Adaboost algorithm specialized for drug-
target interaction prediction. It entails solving weighted versions of the objective
function underlying NRMLF, a well-known method for this type of problems.
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Our experiments show that this method outperforms a single DTI filter and
an Adaboost algorithm not specialized for DTI in 7 of 8 datasets. Future work
includes the use of the Adaboost as a feature selector, following a multi-kernel
approach for DTI. In this variant, several base learners are trained with differ-
ent similarity measures at each round, and the best predictor is added to the
ensemble.
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of DGIP from the Federico Santa Maŕıa Technical University.

References

1. Ban, T., Ohue, M., Akiyama, Y.: Efficient hyperparameter optimization by
using Bayesian optimization for drug-target interaction prediction. In: IEEE 7th
ICCABS, pp. 1–6, October 2017

2. Cobanoglu, M.C., Liu, C., Hu, F., Oltvai, Z.N., Bahar, I.: Predicting drug-target
interactions using probabilistic matrix factorization. J. Chem. Inf. Model. 53(12),
3399–3409 (2013)

3. Ding, H., Takigawa, I., Mamitsuka, H., Zhu, S.: Similarity-based machine learning
methods for predicting drug-target interactions: a brief review. Briefings Bioinform.
15(5), 734 (2014). https://doi.org/10.1093/bib/bbt056

4. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. Ann. Stat. 38(2), 337–407 (2000)

5. Gönen, M.: Predicting drug-target interactions from chemical and genomic kernels
using bayesian matrix factorization. Bioinformatics 28(18), 2304–2310 (2012)

6. Johnson, C.C.: Logistic matrix factorization for implicit feedback data. In:
Advances in Neural Information Processing Systems 27 (2014)

7. Keum, J., Nam, H.: Self-BLM: prediction of drug-target interactions via self-
training SVM. PLOS ONE 12(2), 1–16 (2017). https://doi.org/10.1371/journal.
pone.0171839

8. Li, Z., et al.: In silico prediction of drug-target interaction networks based on drug
chemical structure and protein sequences. Sci. Rep. 7(1), 11174 (2017)

9. Liu, Y., Wu, M., Miao, C., Zhao, P., Li, X.L.: Neighborhood regularized logistic
matrix factorization for drug-target interaction prediction. PLOS Comput. Biol.
12(2), 1–26 (2016). https://doi.org/10.1371/journal.pcbi.1004760

10. Rayhan, F., Ahmed, S., Shatabda, S., Farid, D.M., Mousavian, Z., Dehzangi, A.,
Rahman, M.S.: iDTI-ESBoost: identification of drug target interaction using evo-
lutionary and structural features with boosting. Sci. Rep. 7(1), 17731 (2017)

11. Smola, A.J., Schölkopf, B.: Learning with kernels, vol. 4. Citeseer (1998)
12. Tsai, C.F., Hung, C.: Cluster ensembles in collaborative filtering recommendation.

Appl. Soft Comput. 12(4), 1417–1425 (2012)
13. Wang, Y., Sun, H., Zhang, R.: AdaMF: adaptive boosting matrix factorization

for recommender system. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.)
WAIM 2014. LNCS, vol. 8485, pp. 43–54. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08010-9 7

14. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Predic-
tion of drug-target interaction networks from the integration of chemical and
genomic spaces. Bioinformatics 24(13), i232 (2008). https://doi.org/10.1093/
bioinformatics/btn162

https://doi.org/10.1093/bib/bbt056
https://doi.org/10.1371/journal.pone.0171839
https://doi.org/10.1371/journal.pone.0171839
https://doi.org/10.1371/journal.pcbi.1004760
https://doi.org/10.1007/978-3-319-08010-9_7
https://doi.org/10.1007/978-3-319-08010-9_7
https://doi.org/10.1093/bioinformatics/btn162
https://doi.org/10.1093/bioinformatics/btn162


220 C. Orellana M. et al.

15. Yuan, Q., Gao, J., Wu, D., Zhang, S., Mamitsuka, H., Zhu, S.: Druge-rank: improv-
ing drugtarget interaction prediction of new candidate drugs or targets by ensemble
learning to rank. Bioinformatics 32(12), i18–i27 (2016)

16. Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization
with multiple similarities for predicting drug-target interactions. In: Proceedings
of the 19th ACM SIGKDD, pp. 1025–1033. ACM (2013)


	Boosting Collaborative Filters for Drug-Target Interaction Prediction
	1 Introduction
	2 Problem Statement and Related Work
	3 Proposed Method
	4 Experiments
	5 Conclusions
	References




