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Abstract. The kNN algorithm has three main advantages that make
it appealing to the community: it is easy to understand, it regularly
offers competitive performance and its structure can be easily tuning
to adapting to the needs of researchers to achieve better results. One
of the variations is weighting the instances based on their distance. In
this paper we propose a weighting based on the Newton’s gravitational
force, so that a mass (or relevance) has to be assigned to each instance.
We evaluated this idea in the kNN context over 13 benchmark data sets
used for binary and multi-class classification experiments. Results in F;
score, statistically validated, suggest that our proposal outperforms the
original version of kNN and is statistically competitive with the distance
weighted kNN version as well.

1 Introduction

The k-Nearest Neighbor (kNN) classification algorithm is one of the most pop-
ular approaches used by researchers and practitioners in the areas of Pattern
Recognition and Machine Learning. Altogether with the Support Vector Ma-
chine (SVM)), it is considered a firm representative of the classification by analogy
principle [4].

Generally speaking, kNN only needs one parameter to be adjusted, k, which
represents how many closest neighbors are to be considered to classify an unseen
object. Once this parameter is set, two main approaches are followed in order
to classify an object, (i), the vote of the majority of the k neighbors, and (i),
a weighted vote of all k neighbors considering the distance from where each of
them are located with respect to the object to classify. Following these two ideas,
the kNN algorithm has been successfully applied in such diverse learning task
such as data mining [14], image processing [6], and recommender systems [7].

For classification purposes, all kNN variants, up to now, have assumed that,
independently of the voting strategy that they follow (by majority or weighted)
all objects in the training set are equal in their classification power. For instance,
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if two objects from different classes are exactly at the same distance of a test
object, both objects will contribute the same amount to the final decision. An-
other way to perceive this is by saying that the two training objects have the
same relevance. In this work, we are interested in proposing some ideas to alter
this behavior. Motivated by how big bodies exert and influence to proximate
objects, we think of assigning a mass to each of the objects in the training set.

There are several scenario applications that make us hypothesize that assign-
ing a mass to all the training objects could have positive effects in the classifi-
cation performance of the KNN algorithm. Particularly, this could be of interest
when some aspect or natural feature of the problem needs to be considered. For
example, within the field of Natural Language Processing (NLP), for the task
of news classification, capturing the temporal aspect may be relevant, i.e. more
recent news could be more informative (or have more context) than older ones?.
In this case, we could think of the more recent news to have a larger influence,
thus a larger mass. Another application of this approach could be the recogni-
tion of highly heterogeneous categories. In this case it is usual that the majority
of the neighbors (to the object to classify) vote for a wrong label. With objects
with different masses it would be possible to overcome this decision, i.e. if the
objects with the right class have proper mass.

In this work we approach these ideas by proposing two different ways to cal-
culate a mass for a given object. We formulate the kNN algorithm to take into
consideration this mass by using a voting strategy based on Newton’s gravita-
tional force. We tested our proposal in 13 benchmark data sets and contrasted
the results against the regular kNN and weighted kNN algorithms.

2 Related Work

Literature has reported several ways in which the kNN algorithm could improve
its performance. Naturally, finding an optimal value of k has been one of the
questions that some works have attempted to solve [17,16]. Besides finding this
k value, there is an open question regarding which distance metric is the more
suitable to use. In this regard, some previous works have evaluated new and
traditional metrics in a variety of classification problems [2, 15, 8].

Using a weighting scheme was firstly proposed by Dudani [5] in the 70’s,
this variant of kNN is called the Distance- Weighted k-Nearest-Neighbor Rule
(DWKNN). Since then, different weighting schemes have been proposed. Among
the most recent works, Tan [12] proposed the algorithm Neighbor- Weighted k-
Nearest Neighbor (NWKNN), which applies a weighting strategy based on the
distribution of classes. When working with unbalanced data sets, NWKNN gives
a minor weight to objects of majority classes and more weight to objects less
represented. For the case of text classification, Soucy and Mineau [11] proposed
a weighting based on the similarity of texts (objects), measured by the cosine

4 Before 2016 it would not be surprising to classify a news containing the term Donald
Trump in the Business section, when now it would be more appropriate to assign it
to the political section.
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similarity between their bag-of-word representations. Mateos-Garcia et al. [9]
developed a technique similar to those used in Artificial Neural Networks to
optimize some weights that would indicate the importance that each neighbor
has with respect to the test objects. Finally, Parvinnia et al. [10] also computed
a weight for each training object based on a matching strategy between the
training and testing data sets.

3 Proposed algorithm

In this section we present two approaches to calculate a mass for a given object
in the training set. We then explain the complete kNN framework that exploits
the concept of mass, by considering Newton’s gravitational force.

3.1 Mass Assignment

Approach 1. Circled by its own class (CC). This approach is based on a
instance selection strategy known as Edited Nearest Neighbor (ENN) originally
proposed by Wilson [13]. The rationale of ENN is to keep an instance that is
surrounded (or circled) by other instances of its same class. For the CC approach,
the mass of an object z is directly proportional to the number of objects from
its same class that circled it. By doing this, we aim to give less importance to
objects that are in regions of the feature space that are more likely to represent
a different class. In other words, the idea is to penalize rare objects and, as a
consequence, make the classifier more robust to outliers. To calculate the mass
via CC we apply the Eq. 1.

m(z € ¢;) = logy(SNk(x,¢;) + 2) (1)

where z is a training object, ¢; is its class and the function SNi() calcu-
lates how many out of the k closest objects to x belong to its same class. The
log2() function serves as a smoothing factor; we include a constant 2 to avoid
computation errors or obtaining masses equal to zero.

Approach 2. Circled by different classes (CD). This approach is the op-
posite of the CC approach. It gives more mass to objects that are surrounded
by objects from different classes, that is, the mass is inversely proportional to
the number of objects of the same class. CD aims to balance the discriminative
power of an outlier object, since it could be relevant to classify other outlier
object in the testing set. It also allows to better modeling heterogeneous classes
formed by different small subgroups of objects. To assign a mass following this
approach we applied the Eq. 2. The interpretation of its elements is the same as
in Eq. 1.

m(x € ¢;) = logy(k — SNi(x,¢;) +2) (2)
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3.2 Weighted Attraction Force kNN algorithm (WAF-kNN)

The traditional weighted kNN algorithm is as follows: given a set of training
objects {(x1, f(x1)), ..., (xs, f(x;))} (being x; an object and f(x;) its label), an
unlabeled object x4, and the set of the k closest neighbors to x, in the training
set {x1, ...,z }, the class of z, is determined by Eq. 3:

k
f(zq) + arg maxz weight(x;) x §(c, f(x;)) (3)
ceC P
where C represents the set of classes, weight(z;) indicates the weight for the
vote from object x;, and (¢, f(z;)) is a function that returns 1 if x; belongs to
class ¢ or 0, otherwise.
Supported on this framework, our proposal, that we call Weighted Attraction
Force kNN, or simply WAF-kNN, uses a weighting scheme based on the Law of
Universal Gravitation as presented by Eq. 4.

memle) | mle) W
dist?(zq, ;) dist?(zq, ;)

where weight(x;) is the attraction force or the voting amount exerted by the
training object x; to classify the object 4. m(z,) and m(x;) are the masses of
the testing and training objects respectively, and dist(-, -) is a distance metric be-
tween the two objects. The reader could detect that there are two constants that
we could omit to simplify the original equation, since they only serve as scaling
factors without affecting how the vote is computed. These two constants are G
and m(z,). Note that m(z;) could be calculated by any of the two approaches,
CC or CD, that we already presented in Section 3.1 for mass assignment.

weight(z;) = G

4 Experiments and Results

4.1 Experimental Configuration

For the evaluation of the proposed approach we considered 13 different data sets
from the UCT data repository®. All these data sets exclusively contain numeric
features and do not show any missing value. These data sets are commonly used
in classification tasks. Table 1 presents some statistics on these data sets such
as the number of instances, features, and classes.

We applied a common experimental setting for the experiments across all the
collections. Firstly, we considered three different values for k£, namely, 3, 5 and 7.
Then, we standardized the data by means of their z-scores. In all the experiments
we used the Euclidean distance as the distance measure, and employed the F;
score as main evaluation metric due to its appropriateness for describing results
in unbalanced data sets. A 10-fold cross-validation procedure was applied to get
the results. Finally, we applied the non-parametric Bayesian Signed-Rank (BSR)
test [1] for analyzing the statistical significance of the obtained results.

® https:/ /archive.ics.uci.edu/ml/datasets.html



Weighted K-Nearest Neighbor based on Newton’s Gravitational Force 5

Table 1. Data sets characteristics.

Data sets |Instances|Features|Classes Classes Distribution
Arcene 100 10000 2 56/44
Ecoli 336 7 8 143/77/52/35/20/5/2/2
Glass 214 9 6 76/70/29/17/13/9
Haberman 306 3 2 225/81
Ionosphere 351 34 2 225/126
Iris 150 4 3 50/50/50
Landsat 6435 36 6 1533/1508/1358/707/703/626
Page Blocks 5473 10 5 4913/329/115/88/28
Pima 768 8 2 500/268
Sonar 208 60 2 111/97
Thyroid 215 5 3 150/35/30
Vehicle 846 18 4 218/217/212/199
Wine 178 13 3 71/59/48

4.2 Results

Table 2 presents a first comparison of the approaches used to calculate the masses
(CC and CD), each employed within the WAF-kNN algorithm. This table is
organized by the three k values that were evaluated. The best results, for each
k, are shown in bold face. Globally, the CD approach slightly outperforms the
CC approach, being this more evident when k£ = 7; notwithstanding, there are
data sets where the CC approach is better for all k£ values, e.g. Arcene and Ecoli.
The analysis of the Ecoli data set tell us that classes are more or less well defined
in homogeneous clusters. Being this the case, the CD approach gives more mass
to outliers, causing a larger classification error than CC, which assigns less mass
to objects away from their class main centroid and having the effect of reducing
noise. Both approaches, CC and CD, aim to offer a better weighting scheme to
improve classification performance, but which one to use will ultimately depend
on the distribution of classes in the data set of interest.

To evaluate our proposal against kNN and DWKNN algorithms, we chose
the CD approach given its consistent performance in the previous experiment.
This new comparison is presented in Table 3, where it can be observed that our
proposal outperforms the baseline methods in the majority of data sets. This
behavior is consistent among the three values of k that are considered. Again,
the best performance is obtained with £ = 7.

To further analyze these results, we applied the non-parametric BSR test [3].
According to this test three possibilities do exist for a given pairwise comparison
of methods A and B: (scenario 1) A outperforms B, (scenario 2) both methods
show the same performance, or (scenario 3) B outperforms A. The BSR test
computes the probability of occurrence of each scenario when we applied ap-
proaches A and B over a given data set. Table 4 presents the probabilities of
occurrence for each scenario when comparing the baseline approaches kNN and
DWKNN with our proposed WAF-kNN approach, respectively.
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Table 2. F1 scores of WAF-kNN, using the two approaches for mass assignment.

Data sets | CC [ CD | CC [ CD | CC [ CD
k=3 k=5 k=7
Arcene 0.762 0.753|0.774 0.758 |0.761 0.759
Ecoli 0.714 0.652|0.736 0.706 |0.752 0.725
Glass 0.556 0.618|0.560 0.613|0.577 0.594
Haberman [0.571 0.570|0.535 0.549|0.507 0.528
Tonosphere |0.796 0.851]0.793 0.826|0.785 0.831
Iris 0.954 0.954(0.954 0.954]0.954 0.954
Landsat 0.894 0.883|0.894 0.895|0.889 0.893
Page Blocks|0.827 0.808 |0.826 0.814|0.815 0.817
Pima 0.697 0.683|0.702 0.692|0.694 0.695
Sonar 0.847 0.863|0.817 0.839|0.803 0.839
Thyroid 0.904 0.933/0.909 0.933|0.909 0.916
Vehicle 0.694 0.707[0.689 0.714|0.688 0.720
Wine 0.951 0.956/0.969 0.969 |0.964 0.969

Table 3. Comparison of kNN, DWKNN and WAF-kNN using CD masses.

Data sets kNN[DWkNN WAF kNN[DWkNN[WAF kNN[DWkNN WAF
k=3 k=5 k=7
Arcene 0.762 0.762 (0.753]0.796 0.796 0.758|0.736 0.736 0.759
Ecoli 0.688 0.697 0.652|0.727 0.729 0.706 |0.748 0.747  0.725
Glass 0.610 0.610 0.618/0.597 0.604 0.613/0.536 0.572 0.594
Haberman |0.547 0.561 0.570/0.521 0.526 0.549|0.524 0.519 0.528
Ionosphere |0.797  0.797 0.851|0.811 0.813 0.826(0.777 0.777 0.831
Iris 0.954 0.954 0.954|0.946 0.954 0.954/0.947 0.968 0.954
Landsat 0.894 0.894 0.883]0.893 0.892 0.895/0.889 0.890 0.893
Page Blocks|0.816 0.814 0.808|0.820 0.827 0.814(0.787 0.817 0.817
Pima 0.706 0.703 0.683(0.706 0.704 0.692|0.704 0.707 0.695
Sonar 0.847 0.847 0.863|0.794 0.798 0.839/0.812 0.817 0.839
Thyroid 0.904 0.904 0.933/0.906 0.909 0.933/0.877 0.915 0.916
Vehicle 0.706  0.703 0.707|0.713 0.711 0.714/0.711 0.707 0.720
Wine 0.951  0.951 0.956|0.964 0.964 0.969/0.964 0.964 0.969

Table 4. BSR output probabilities. A refers to the baseline methods, kNN and

DWXKNN respectively, whereas B refers to the proposed WAF-kNN approach.

Compared
algorithms

Scenarios

A >B[A = B[A <B

kNN vs WAF-KNN
DWKNN vs WAF-kNN

0.0001 0.1951 0.8048
0.0018 0.6305 0.3677
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According to the performance of the WAF algorithm in each data set (with
k =T7), it was in Ionosphere and Ecoli, where we obtained the largest improve-
ment and decrement with respect to the baseline methods, respectively. When
visualizing these data sets, it is possible to notice some data characteristics that
could shed some light on details about the behavior of the method.

lonosphere

Fig. 1. t-SNE mapping of the Ionosphere and Ecoli data sets.

Figure 1 shows the distribution of objects in these two data sets using the
t-distributed Stochastic Neighbor Embedding (t-SNE). The Ionosphere data set
is composed by two classes. Class 1, represented in red color and grouped in
two well defined clusters which are located in the upper and lower section of the
space. Class 2, represented in blue color and mainly spread along the mapping
space with an identifiable cluster on the right side of the figure. For this case,
the CD approach favors the classification of objects of class 2 by assigning more
mass to training objects that are located in the central and upper left region,
which are clearly circled by objects of class 1, thus getting right label assignment
even in regions where majority of objects belong to different class. On the other
hand, in the Ecoli data set, CD gives more mass to hypothetical noisy objects
located away from their normal behavior of its own class (see blue and white
objects over the green cluster objects), then negatively affecting the classifier.

5 Conclusions

In this work we introduced the WAF-kNN algorithm, which is a variant of the
weighted kNN algorithm but based on the attraction force that exist between
two objects. We present two methods of assigning mass to training objects,
i.e. Circled by its own class (CC) and Clrcled by different classes (CD). For
testing purposes 13 known data sets were employed. Comparisons indicate that
our proposal obtained better classification results than kNN and is statistically
competitive with DWKNN. These results were validated with a non-parametric
BSR test.
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