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Abstract. Facial expression estimation has for years been studied bene-
fiting a wide array of application areas ranging from information retrieval
and sentiment analysis to video surveillance and emotion analysis. Meth-
ods have been proposed to tackle the problem of facial attribute recog-
nition using deep architectures yielding high accuracies, however less
efforts exist to focus on the performance of these architectures. Here in
this work, we make use of Squeeze-Net [6] for the first time in the lit-
erature to perform facial emotion recognition benchmarked on Celeb-A
and AffectNet datasets. Here we extend Squeeze-Net by introducing a
new 5 x 5 convolution kernel after the last fully-connected layer offered
by Squeeze-Net, merging the 1 x 1 and 3 x 3 outputs from the last fully-
connected layers, to perform a more domain-specific feature extraction.
We run extensive experiments using widely-used datasets; i.e. Celeb-A
and AffectNet, using AlexNet and Squeeze-Net in addition to our pro-
posed architecture. Our proposed architecture, an extension to Squeeze-
Net, yields results inline with state of the art while offering a simple archi-
tecture involving less complexity compared to state of the art, reporting
accuracies of 90.47% and 56.38% compared to 90.94% and 52.36%, in
Attribute Prediction and Expression Prediction respectively.

Keywords: Attribute prediction - Emotion recognition -
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1 Introduction

For the past decade, Facial expression estimation has been a subject of attention
in the literature due to large array of application areas it can serve. A wide range of
salient information is traceable in a human face, including but not limited to age,
gender, race, emotion triggered, etc. Application areas include social media mining,
face search and retrieval systems as well as video surveillance, to name a few.
Many conventional methods used for feature extraction in the context of
computer vision problems have been replaced by convolutional neural networks
[8]. CNNs have proved their effectiveness in attribute classification, hence justi-
fying such replacement. However, CNNs have introduced their own challenges,
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such as the constant need for relatively large-scale and reliable labeled training
samples as well as the complexity involved in modifying the default functionality
of different layers in a given network in an attempt to take advantage of transfer
learning.

Most works in the literature focus on improving the classification accuracy
by introducing highly complex architectures. To address this problem [6] offers
a smaller CNN architecture that achieves AlexNet-level accuracy on ImageNet
with 50x fewer parameters. Less works in this area, however, have made use of
SqueezeNet’s architecture specifically to perform Facial Attribute Estimation.
Here in this work, not only we make such use of Squeeze-Net, but we also intro-
duce a completely new convolutional layer at the end of the network with a larger
kernel size. Benchmarks run on SqueezeNet compared to our proposed architec-
ture, equipped with our newly introduced layer, suggests a high accuracy inline
with state of the art, while keeping the micro-architecture a lot simpler than the
traditional CNNs performing feature extraction.

The remainder of this paper is organized as follows. Section 2 provides infor-
mation on the most recent efforts in the literature on the subject of facial
attribute estimation and understanding. Next, we discuss our proposed method
in Sect. 3 providing details on Face Attribute Expression as well as Face Expres-
sion Recognition. Moreover, we dig into the experimental setup of our proposed
micro-architecture in Sect. 4, providing details on the configuration of the pro-
posed CNN and experiments run. Finally, Sect. 5 provides a thorough analysis of
the results of experiments, comparing our work against state of the art. Section 6
concludes the paper and provides potential future work directions.

2 Related Works

There exist considerable amount of research on Attribute Estimation taking
advantage of different CNN architectures and multi-label classification. The most
popular open source packages available for training and testing of deep CNNs
include, but are not limited to Caffe [7], TensorFlow [1] and Keras [3]. Deep-Face
applied both siamese deep CNN and a classification CNN in order to maximize
the distance between impostors and minimize the distance between true matches.
Efforts in the field of Face Recognition mainly focus on developing deeper and
more complex architectures, yielding relatively higher accuracies at the cost of
higher complexity introduced to the architectures.

[5] takes advantage of the discriminative power of CNNs to learn semantic
attribute classifiers as a mid-level representation for subsequent use in recogni-
tion and verification systems. In a close work to ours, [4] presents a Deep Multi-
Task Learning approach to jointly estimate multiple heterogeneous attributes
from a single face image. They tackle attribute correlation and heterogeneity
with convolutional neural networks (CNNs) consisting of shared feature learn-
ing for all the attributes, and category-specific feature learning for heteroge-
neous attributes. [4] reports an average accuracy of 86.1% for smile and gender
classification.
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Approaches using hand-crafted and deep learning features can be grouped
into two categories: (i) single-task learning of per attribute classifier; and (ii)
multi-task learning of a joint attribute classifier. A known caveat with single-
task learning is lack of attention to the correlation between the tasks, hence
estimating each task separately. Here in this work, however, we propose a multi-
task approach where multiple models are learned for multi-attribute estimation
using a shared representation. This approach can also be observed in [2] tackling
human attribute prediction problem.
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Fig. 1. Microarchitectural view: organization of convolution filters in the Fire module.
The microarchitecture depicted on the left shows default organization of Squeeze-Net.
The microarchitecture depicted on the right shows Squeeze-Net enhanced with the
proposed 5 X 5 convolution layer.

3 Our Proposed Method

The goal in this work is to demonstrate that our proposed architecture, for fea-
ture extraction, depicted in Fig. 2, outperforms Alex-Net as well as Squeeze-
Net architectures specifically when dealing with Face Attribute Estimation.
Towards this aim, here we extend the microarchitecture offered by Squeeze-Net
as depicted in Fig. 1. Squeeze-Net begins with a standalone convolution layer
(convl), followed by 8 fire modules (fire2-9), ending with a final convolution
layer (conv10). The number of filters per fire module increases gradually from
the beginning to the end of the network. Squeeze-Net performs max-pooling with
a stride of 2 after layers convl, fire4, fire8, and convl0. A Fire module is com-
prised of a squeeze convolution layer (only 1 x 1 filters), feeding into an expand
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Fig. 2. System architecture depicting 4 blocks, each containing a 2D convolutional
layer, two fire modules and max pooling layer, a shared feature extractor, followed by
the top module

layer that has a mix of 1 x1 and 3 x 3 convolution filters. The output of the
fire-module is the concatenated outputs of the expand layer.

In our proposed micro-architecture, we (i) add a batch normalization layer
after the squeeze convolution layer, and (ii) introduce dropout layers after the
expand layers as depicted in Fig. 1. The result of our experiments further dis-
cussed in Sect. 5 demonstrate that our proposed microarchitecture yields a higher
generalization ability compared to state of the art.

It is worth mentioning that in fine-grained tasks, such as Face Attribute
Prediction and Face Expression Recognition, the objective is to find features
that are capable of capturing the subtle highly localized intra-class variations.
Therefore, here, we inject our newly developed convolution layer of 5 x 5 filters
into our microarchitecture after every few fire modules. We borrow our intuition
from the fact that a convolution layer with a larger kernel size provides us with
better discriminative features after a sequence of convolution layers with 1 x 1
and 3 x 3 filters.

As depicted in Fig. 1, our microarchitecture begins with a block of two fire
modules (squeeze filters, expand filters), followed by a convolution layer of 5 x 5
of expand filters, further followed by a max-pooling layer of size 3 with stride 2.
Our experiments, further explained in Sect. 4 are run on the proposed architec-
ture depicted in Fig. 2.

The proposed feature extractor, as part of our proposed architecture, benefits
from the following setup:

— A convolution layer of 7 x 7 kernel of 96 filters

— A micro-architecture with (squeeze filters = 16, expand filters = 64)
— A micro-architecture with (squeeze filters = 32, expand filters = 128)
— A micro-architecture with (squeeze filters = 48, expand filters = 192)
— A micro-architecture with (squeeze filters = 64, expand filters = 256)
— A fully-connected layer of size 1024
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This feature extractor is attached to a top-network that is domain-specific:

— To perform Face Attribute Prediction, as a multi-label problem, our top net-
work consists of multiple independent sub-networks of fully connected layers.

— To perform Face Expression Recognition, as a multi-classification problem,
our top network consists of up of 2 fully connected layers with dropouts.

3.1 Face Attribute Prediction

Face Attribute Prediction is a multi-label classification problem that aims at
determining if a given face matches attributes among a set of binary attributes.
The CelebA [9] dataset benefits from 40 attributes, such as eyeglasses, wearing
hat etc. Excerpts from CelebA dataset are shown in Fig. 3. In this work, the archi-
tecture designed for Face Attribute Prediction makes use of the proposed feature
extractor with the top network consisting of 40 independent sub-networks; i.e.
the same number as the number of attributes supported by CelebA dataset.
Each sub-network consists of a fully-connected layer of size 512, followed by a
fully-connected layer of size 256 and a final output layer with sigmoid activation.

3.2 Face Expression Recognition

Face Expression Recognition, a multi-classification problem, is a well-studied
problem in computer vision. We use a subset of AffectNet [10] as our dataset
to run experiments for Face Expression Recognition. Here we sub-sampled the
dataset in an attempt to avoid the class imbalance problem posed by the orig-
inal AffectNet. Our sub-sampled dataset offers 8 categories with each category
containing a maximum of 5,000 images. For the Face Expression Recognition,
our proposed architecture makes use of the feature extractor with a top network
of fully connected layers of sizes [512,512] and a final layer of size 8 with softmax
activation.

Table 1. Experiments table showing benchmarked datasets, number of epochs, number
of classes as well as the batch size used

Dataset No. of epoch | No. of classes | Batch size
CelebA 20 - 64
Affect-Net | 50 8 64

4 Experimental Setup

All experiments pointed out in this work are run on a AWS p2.x Large instance
with a memory of 61 GiB. The implementation is done using the Keras Python
Deep Learning Library. Table1 shows the number of epochs, batch size and
number of classes for each task.

12 regularization value of 0.0001 is used for the convolution layers for both
implementations. Bath size is set to 64 and the learning rate is configured to
0.001. Adam Optimizer was used to perform optimization.
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Fig. 3. Excerpts from AffectNet and CelebA datasets.

Table 2. Attribute estimation accuracies across multiple methodologies benchmarked
on AffectNet and CelebA. AffectNet* refers to the sub-sampled balanced dataset to
avoid class imbalance problem.

Problem Dataset Method Accuracy
Attribute prediction | CelebA PANDA [12] 85%
Attribute prediction | CelebA Zhong [13] 89.8%
Attribute prediction | CelebA MOON [11] 90.94%
Attribute prediction | CelebA SqueezeNet [6] 82.14%
Attribute prediction | CelebA SqueezeNet-Enhanced | 90.47%
Attribute prediction | CelebA Hand [5] 91.26%
Attribute prediction | CelebA Han [4] 93%
Expression prediction | AffectNet* | AlexNet [8] 52.36%
Expression prediction | AffectNet* | SqueezeNet [6] 48.16%
Expression prediction | AffectNet* | SqueezeNet-Enhanced | 56.38%

5 Results and Analysis

In this section, we analyze the results reported by state of the art as well as our
proposed architecture, depicted in Fig. 2.

5.1 Attribute Prediction Results

As shown in Table 2, our proposed architecture outperforms state of the art in
Expression Prediction and yields almost the same accuracy compared to state of
the art when tackling Attribute Prediction, while avoiding the complexities intro-
duced in [12,13] and [11]. [4] proposes a method for inferring human attributes,
such as gender, hair style, etc., from images of people under large variation of
viewpoint pose, appearance, articulation and occlusion, hence offering a part-
based model. This method, while yielding reasonable accuracy, requires more
training as well as labeled data when compared to our method proposed here.
[13], on the other hand, considers mid-level CNN features as an alternative to the
high-level ones for attribute prediction. Their intuition is based on the observa-
tion that the mid-level deep representations outperform the prediction accuracy
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achieved by the fine-tuned high level abstractions. This work requires transfer
learning as opposed to our proposed methodology, where all features are learned
from the beginning of the network from scratch, eliminating the need to perform
transfer learning, while not sacrificing the achieved accuracy. In [11], the focus
is addressing the multi-label imbalance problem by introducing a novel mixed
objective optimization network (MOON) with a loss function that mixes multi-
ple task objectives with domain adaptive re-weighting of propagated loss. This
work yields an accuracy of 90.94%, which is closest to the accuracy reported here
in this work; i.e. 90.47%. The marginal difference in the accuracy reported by
MOON compared to the accuracy reported by our method can be attributed to
the fact that MOON’s loss function implementation is more complex than our
loss function; i.e. standard cross entropy.

5.2 Expression Prediction Results

In order to demonstrate the effectiveness of our proposed method in other
application areas, here we run experiments for Expression Prediction on a sub-
sampled balanced version of AffectNet. As reported in Table2, our proposed
method offers an accuracy of 56.38%, beating accuracies yielded by AlexNet and
SqueezeNet, reported as 52.36% and 48.16% respectively. Here the observation
is that the standard AlexNet and SqueezeNet implementations are more chal-
lenged to extract localized information compared to our proposed architecture,
equipped with our 5 x 5 convolution filter, as part of its Fire Module.

6 Conclusion

In this work, we propose a novel CNN architecture, an enhanced version of
Squeeze-Net, which extends Squeeze-Net’s fire module by adding a 5 x 5 convo-
lution kernel to perform a more accurate feature extraction. To demonstrate the
effectiveness of our proposed architecture, we ran experiments on two wildly-used
datasets; i.e. CelebA and AffectNet, across two separate problem domains; i.e.
Face Attribute Prediction and Face Expression Recognition. Our results provide
proof that while inline with accuracies reported by state of the art; i.e. beating
state of the art in Expression Prediction and reporting a very close accuracy
in Attribute Prediction, less complexity is involved in the proposed architec-
ture. In the Attribute Prediction and Expression Prediction domains, our system
yields accuracies of 90.47% and 56.38% respectively, compared to best accuracies
reported by the state-of-the-art methods; i.e. 90.94% and 52.36% on the men-
tioned domains. Work is currently in progress to run similar experiments with
a slightly different architecture; i.e. adding a 7 x 7 convolution kernel instead of
the proposed 5 x 5 kernel currently in use and analyze the architecture’s effec-
tiveness accordingly.
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