
ar
X

iv
:1

80
8.

04
11

1v
2

 [
cs

.L
O

]
 3

0
N

ov
 2

01
8

Proving Program Properties as First-Order

Satisfiability⋆

Salvador Lucas

DSIC, Universitat Politècnica de València, Spain,
http://slucas.webs.upv.es/

Abstract. Program semantics can often be expressed as a (many-sorted)
first-order theory S , and program properties as sentences ϕ which are
intended to hold in the canonical model of such a theory, which is often
incomputable. Recently, we have shown that properties ϕ expressed as
the existential closure of a boolean combination of atoms can be disproved
by just finding a model of S and the negation ¬ϕ of ϕ. Furthermore, this
idea works quite well in practice due to the existence of powerful tools for
the automatic generation of models for (many-sorted) first-order theo-
ries. In this paper we extend our previous results to arbitrary properties,
expressed as sentences without any special restriction. Consequently, one
can prove a program property ϕ by just finding a model of an appropri-
ate theory (including S and possibly something else) and an appropriate
first-order formula related to ϕ. Beyond its possible theoretical interest,
we show that our results can also be of practical use in several respects.

Keywords: First-Order Logic, Logical models, Program analysis.

1 Introduction

Given a first-order theory S and a sentence ϕ, finding a model A of S∪{¬ϕ}, i.e.,
such that A |= S ∪{¬ϕ} holds, shows indeed that ϕ is not a logical consequence
of S: there is at least one model of S (e.g., A) which does not satisfy ϕ (as it
satisfies ¬ϕ). Provability of ϕ in S, i.e., S ⊢ ϕ, implies (by correctness of the
proof calculus) that ϕ is a logical consequence of S (written S |= ϕ). Thus,
A |= S ∪ {¬ϕ} disproves ϕ regarding S; this can be written ¬(S ⊢ ϕ) by using
some metalevel notation. In general, this does not allow us to conclude that ¬ϕ
is proved, i.e., S ⊢ ¬ϕ, or is a logical consequence of S, i.e., S |= ¬ϕ. What can
be concluded about ¬ϕ regarding S from the fact that A |= S∪{¬ϕ} holds? Can
this be advantageously used in a ‘logic-based’ approach to program analysis?

In [14], some answers to these questions are given: a sentence ϕ which is an
Existentially Closed Boolean Combination of Atoms (ECBCA for short) does not
hold in the initial model IS of a theory S consisting of a set of ground atoms
if we find a model A of S ∪ {¬ϕ} [14, Corollary 2]. This is useful in program

⋆ Partially supported by the EU (FEDER), projects TIN2015-69175-C4-1-R, and GV
PROMETEOII/2015/013.

http://arxiv.org/abs/1808.04111v2
http://slucas.webs.upv.es/

analysis when considering programs P that are given a theory P representing
its operational semantics so that the execution of P is described as a set IP of
(ground) atoms A which can be proved from P (i.e., IP is the initial model of P
in the usual first-order sense; in the following, we often refer to it as its canonical
model [11, Section 1.5]). Actually, rather than being logical consequences of P ,
the intended meaning of first-order sentences ϕ that represent properties of P is
that they hold in the initial model of P , see [4, Chapter 4], for instance.

In [14,16] we applied this approach to prove computational properties of
rewriting-based systems in practice. This includes Term Rewriting Systems (TRSs
[1]) and more general rewriting-based formalisms [3,9,18,19].

Example 1. Consider the following TRS R with the well-known rules defining
the addition and product of natural numbers in Peano’s notation:

add(0, x) → x (1)

add(s(x), y) → s(add(x, y)) (2)

mul(0, x) → 0 (3)

mul(s(x), y) → add(y,mul(x, y)) (4)

The associated theory R is the following:

(∀x) x →
∗ x

(∀x, y, z) x → y ∧ y →
∗
z ⇒ x →

∗ z

(∀x, y) x → y ⇒ s(x) → s(y)

(∀x, y, z) x → y ⇒ add(x, z) → add(y, z)

(∀x, y, z) x → y ⇒ add(z, x) → add(z, y)

(∀x, y, z) x → y ⇒ mul(x, z) → mul(y, z)

(∀x, y, z) x → y ⇒ mul(z, x) → mul(z, y)

(∀x) add(0, x) → x

(∀x, y) add(s(x), y) → s(add(x, y))

(∀x)mul(0, x) → 0

(∀x, y)mul(s(x), y) → add(y,mul(x, y))

The first sentence in the first column represents reflexivity of many-step rewrit-
ing, with predicate symbol →∗; the second sentence shows how one-step rewrit-
ing, with predicate symbol →, contributes to →∗. The next sentences describe
the propagation of rewriting steps to (arguments of) symbols s, add and mul. The
second column describes the rules ofR. More details can be found in [14, Section
4]. In the initial or least Herbrand model IR of R, → and →∗ are interpreted as
the sets (→)IR and (→∗)IR of all pairs (s, t) of ground terms s and t such that
s→R t and s→∗

R t, respectively. Now, we can express the property “the double
of some natural number can be an odd number” as an ECBCA:

(∃x)(∃y)(∃z) add(x, x) →∗ z ∧ s(mul(s(s(0)), y)) →∗ z (5)

With the automatic model generator Mace4 [17] we find a model of R ∪ {¬(5)}
with domain A = {0, 1}. Function symbols are interpreted as follows: 0A = 0;
sA(x) = 1− x; addA(x, y) returns 0 if x = y and 1 otherwise; mulA(x, y) returns
1 if x = y = 1 and 0 otherwise. Predicates → and →∗ are both interpreted as
the equality. Thus, we have proved that (5) does not hold for R.

Our approach in [14] relies on the notion of preservation of a formula under
homomorphisms h between interpretations. Roughly speaking, a homomorphism

2

Property ϕ

Ground reducible (∀x) (∃y) t(x) → y

Completely defined symbol f (∀x)(∃y) f(x1, . . . , xk) → y

Completely defined TRS (∀x)(∃y)
∧

f∈D
f(x1, . . . , xar(f)) → yf

Productive (∀x)(∃y)
∨

c∈C
x →

∗ c(y1, . . . , yk)
Nonterminating (∃x)(∀n ∈ N)(∃y) x →

n y

Inf initely root-reducible (∃x)(∀n ∈ N)(∃y) x(→∗
◦

Λ
→)ny

Normalizing term (∃x) (t →∗ x ∧ ¬(∃y) x → y)
Normalizing TRS (WN) (∀x)(∃y) (x →

∗ y ∧ ¬(∃z) y → z)
Locally confluent (WCR) (∀x, y, z) x → y ∧ x → z ⇒ (∃u) x →

∗ u ∧ z →
∗ u

Conf luent (CR) (∀x, y, z) x →
∗ y ∧ x →

∗ z ⇒ (∃u) x →
∗ u ∧ z →

∗ u

Table 1. Some properties about rewriting-based systems

h preserves a formula ϕ if ϕ is satisfied in the target interpretation of h whenever
ϕ is satisfied in its domain interpretation [11, Section 2.4]. Homomorphisms
preserve ECBCA [11, Theorem 2.4.3(a)]; the results in [14] rely on this fact.
In this paper we extend [14] to deal with more general program properties.
Homomorphisms preserve other first-order sentences if further requirements are
imposed: (i) positive sentences (where connective ‘¬’ is absent) are preserved
under surjective homomorphisms and (ii) arbitrary sentences are preserved under
embeddings [11, Theorem 2.4.3]. In contrast to [14] (and [11]), here we focus
on many-sorted logic [23] (see Section 2). This has an important advantage:
since homomorphisms in many-sorted logic with set of sorts S are actually a
family hs of homomorphisms between components of sort s for each s ∈ S, the
preservation requirements for hs depend on the specific quantification of variables
x : s for such a sort. In Section 3 we provide a unique preservation theorem that
subsumes the results in [14], and even improves [11]. Section 4 investigates how
to guarantee surjectivity of homomorphisms. Section 5 shows several application
examples taken from Table 1, which shows some properties of rewriting-based
systems that could not be captured in [14] but we are able to handle now.
Here, t(x) is a term with variables x (or just t if it is ground), C (and D) are

the constructor (resp. defined) symbols in the TRS, and
Λ
→ is topmost rewriting.

Section 6 discusses the possibility of providing more information about disproved
properties by means of refutation witnesses, i.e., (counter)examples of sentences
which are synthesized from the models that are used to disprove the property.
Section 7 shows how to deal with completely general sentences by means of a
simple example. Section 8 discusses some related work. Section 9 concludes.

2 Many-Sorted First-Order Logic

Given a set of sorts S, a (many-sorted) signature (with predicates) Ω = (S,Σ,Π)
consists of a set of sorts S, an S∗×S-indexed family of setsΣ = {Σw,s}(w,s)∈S∗×S

containing function symbols f ∈ Σs1···sk,s, with a rank declaration f : s1 · · · sk →

3

s (constant symbols c have rank declaration c : λ → s, where λ denotes the
empty sequence), and an S+-indexed family of sets Π = {Πw}w∈S+ of ranked
predicates P : w. Given an S-sorted set X = {Xs | s ∈ S} of mutually disjoint
sets of variables (which are also disjoint from Σ), the set TΣ(X)s of terms of
sort s is the least set such that Xs ⊆ TΣ(X)s and for each f : s1 . . . sk → s and
ti ∈ TΣ(X)si , 1 ≤ i ≤ k, f(t1, . . . , tk) ∈ TΣ(X)s. If X = ∅, we write TΣ rather
than TΣ(∅) for the set of ground terms. The set TΣ(X) of many-sorted terms is
TΣ(X) =

⋃

s∈S TΣ(X)s. For w = s1 · · · sn ∈ S+, we write TΣ(X)w rather than
TΣ(X)s1 × · · · × TΣ(X)sn and even write t ∈ TΣ(X)w rather than ti ∈ TΣ(X)si
for each 1 ≤ i ≤ n. The formulas ϕ ∈ FormΩ of a signature Ω are built up from
atoms P (t) with P ∈ Πw and t ∈ TΣ(X)w, logic connectives (¬, ∧, and also
∨, ⇒,...) and quantifiers (∀ and ∃) in the usual way. A closed formula, i.e., one
whose variables are all universally or existentially quantified, is called a sentence.
In the following, substitutions σ are assumed to be S-sorted mappings such that
for all sorts s ∈ S, we have σ(x) ∈ TΣ(X)s.

An Ω-structure A consists of (i) a family {As | s ∈ S} of sets called the
carriers or domains together with (ii) a function fA

w,s ∈ Aw → As for each
f ∈ Σw,s (Aw is a one point set when w = λ and hence Aw → As is isomorphic
to As), and (iii) an assignment to each P ∈ Πw of a subset PA

w ⊆ Aw; if the
identity predicate = : ss is in Πss, then (=)As s = {(a, a) | a ∈ As}, i.e.,
= : ss is interpreted as the identity on As.
Let A and A′ be Ω-structures. An Ω-homomorphism h : A → A′ is an S-

sorted function h = {hs : As → A′
s | s ∈ S} such that for each f ∈ Σw,s and P ∈

Πw with w = s1, . . . , sk, (i) hs(f
A
w,s(a1, . . . , ak)) = fA′

w,s(hs1(a1), . . . , hsk(ak))

and (ii) if a ∈ PA
w , then h(a) ∈ PA′

w . Given an S-sorted valuation mapping
α : X → A, the evaluation mapping []αA : TΣ(X) → A is the unique (S,Σ)-
homomorphism extending α. Finally, []αA : FormΩ → Bool is given by:

1. [P (t1, . . . , tn)]
α
A = true (with P ∈ Πw) if and only if ([t1]

α
A, . . . , [tn]

α
A) ∈ PA

w ;
2. [¬ϕ]αA = true if and only if [ϕ]αA = false;
3. [ϕ ∧ ψ]αA = true if and only if [ϕ]αA = true and [ψ]αA = true; and

4. [(∀x : s) ϕ]αA = true if and only if for all a ∈ As, [ϕ]
α[x 7→a]
A = true.

A valuation α ∈ X → A satisfies ϕ in A (written A |= ϕ [α]) if [ϕ]αA = true. We
then say that ϕ is satisfiable. If A |= ϕ [α] for all valuations α, we write A |= ϕ
and say that A is a model of ϕ or that ϕ is true in A. We say that A is a model
of a set of sentences S ⊆ FormΩ (written A |= S) if for all ϕ ∈ S, A |= ϕ. Given
a sentence ϕ, we write S |= ϕ iff A |= ϕ holds for all models A of S.

3 Preservation of Many-Sorted First-Order Sentences

Every set S of ground atoms has an initial model IS (or just I if no confusion
arises) which consists of the usual (many-sorted) Herbrand Domain of ground
terms modulo the equivalence ∼ generated by the equations in S. There is a
unique homomorphism h : I → A from I to any model A of S [9, Section 3.2].

4

In the following, h refers to such a homomorphism. If S contains no equation,
then I is the (many-sorted) Least Herbrand Model of S and Is is TΣs for each
sort s ∈ S. In the following, we consider sentences in prenex form as follows:

(Q1x1 : s1) · · · (Qkxk : sk)
m
∨

i=1

ni
∧

j=1

Lij (6)

where (i) for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni, Lij are literals, i.e., Lij = Aij

or Lij = ¬Aij for some atom Aij (in the first case, we say that Lij is positive;
otherwise, it is negative), (ii) x1, . . . , xk for some k ≥ 0 are the variables occur-
ring in those literals (of sorts s1, . . . , sk, respectively), and (iii) Q1, . . . , Qk are
universal/existential quantifiers. A sentence ϕ (equivalent to) (6) is said to be
positive if all literals are.

Theorem 1. Let Ω be a signature, S be a set of ground atoms, ϕ be a sentence
(6), and A be a model of S such that (a) for all q, 1 ≤ q ≤ k, if Qq = ∀ then hsq
is surjective1 and (b) for all negative literals Lij = ¬P (t), with P ∈ Πw, and
substitutions σ, if h(σ(t)) ∈ PA then σ(t) ∈ P I. Then, IS |= ϕ =⇒ A |= ϕ.

In order to achieve condition (b) in Theorem 1, given P ∈ Πw, let N(P) =
Iw −P I be the complement of the (Herbrand) interpretation of P . Let N (P) =
{¬P (t) | t ∈ N(P)} (cf. Reiter’s Closed World Assumption [20]). In general,
N (P) is infinite and incomputable. In some simple cases, though, we can provide
a finite description of N (P) for the required predicates P (see Section 7).

Proposition 1. Let Ω be a signature, S be a set of ground atoms, ϕ be a sen-
tence (6), A be a model of S, and N =

⋃

Lij=¬P (t)N (P) be such that A |= N .

Let Lij = ¬P (t) be a negative literal and σ be a substitution. If h(σ(t)) ∈ PA,
then σ(t) ∈ P I.

Consider a theory S and let S⊢ be the set of ground atoms obtained as the
deductive closure of S, i.e., the set of atoms P (t1, . . . , tn) for each n-ary predicate
symbol P and ground terms t1, . . . , tn, such that S ⊢ P (t1, . . . , tn). The following
result is the basis of the practical applications discussed in the following sections.

Corollary 1 (Semantic criterion). Let Ω be a signature, S0 be a theory,
S = S⊢

0 , ϕ be a sentence (6), and A be a model of S0 such that (a) for all q,
1 ≤ q ≤ k, if Qq = ∀ then hsq is surjective and (b) for all negative literals
Lij = ¬P (t), with P ∈ Πw and substitutions σ, if h(σ(t)) ∈ PA then σ(t) ∈ P I.
If A |= ¬ϕ, then IS |= ¬ϕ.

In the following, we will not distinguish between theories S and their ground
deductive closure S⊢; we rather use S in both cases.

Remark 1 (Proofs by satisfiability). We can prove an arbitrary sentence ϕ valid
in IS by satisfiability in some model A of S. First define ϕ as the negation ¬ϕ
of ϕ. Then, find an appropriate structure A satisfying (a) and (b) (with regard
to ϕ) and such that A |= S ∪ {¬ϕ}. By Corollary 1, I |= ¬ϕ holds. Since ¬ϕ is
equivalent to ϕ, I |= ϕ holds.

1 A mapping f : A → B is surjective if for all b ∈ B there is a ∈ A such that f(a) = b.

5

Models A to be used in Corollary 1 can be automatically generated from the
theory S and sentence ϕ by using a tool like AGES [10] or Mace4. In the following
section, we investigate how to ensure surjectivity when required in Corollary 1.

4 Surjective Homomorphisms

Given Ω = (S,Σ,Π), s ∈ S and T ⊆ TΣs, consider the following sentences:

(∀x : s)
∨

t∈T

x = t (7)
∧

t,u∈T,t6=u

¬(t = u) (8)

In the following, we write (7)s to make sort s referred in (7) explicit. We do the
same in similar formulas below.

Proposition 2. Let Ω be a signature, S be a theory, A be a model of S, s ∈ S,
and T ⊆ TΣs. (a) If T 6= ∅ and A |= (7)s, then hs is surjective and |As| ≤ |T |.
(b) If As 6= ∅ and A |= (8), then |As| ≥ |T |.

In view of Proposition 2(a), denote (7)s as SuHT
s (Ω) (or just SuHT

s or SuHT if
no confusion arises). Whenever T is finite, Proposition 2(a) imposes that the
interpretation domain As for sort s is finite. This is appropriate for tools like
Mace4 which generate structures with finite domains only. However, the choice
of T in Proposition 2, when used together with a theory S imposing further
requirements on symbols, can be crucial for Corollary 1 to succeed. Restricting
the attention to finite domains can also be a drawback. In the following, we
investigate a different approach which avoids any choice of terms T and is valid
for infinite structures as well. Consider the following sentence:

(∀x : s)(∃n : Nat) terms(x, n) (9)

where Nat is a new sort, to be interpreted as the set N of natural numbers, and
terms : sNat is a new predicate for each s ∈ S. The intended meaning of (9)s is
that, for all x ∈ As, there is t ∈ TΣs of height at most n such that x = tA. We
substantiate this, for each sort s ∈ S, by means of two (families of) formulas:

(∀x : s)(∀n : Nat) terms(x, 0) ⇒
∨

c∈Σλ,s

x = c (10)

(∀x : s)(∀n : Nat)(∃m : Nat) (n > 0 ∧ terms(x, n)) ⇒

n > m ∧

terms(x,m)∨
∨

f ∈ Σw,s

w ∈ S+

(∃y : w)

(

x = f(y) ∧
∧

si∈w

termssi(yi,m)

)

(11)

Thus, by (10)s, values x satisfying terms(x, 0) will be represented by some con-
stant symbol c of sort s. Similarly, by (11)s, values x satisfying terms(x, n) for

6

some n > 0 will be represented by some ground term s of height m for some
m < n, or by a term t = f(t1, . . . , tk), where f has rank w → s for some w ∈ S+

and t1, . . . , tk have height m at most.
The set K(s) of s-relevant sorts is the least set satisfying: (i) s ∈ K(s) and

(ii) if f ∈ Σs1···sk,s′ and s′ ∈ K(s), then {s1, . . . , sn} ⊆ K(s). Let ΩNat ,s =
(SNat , ΣNat , ΠNat ,K (s)) be an extension of Ω where SNat = S ∪ {Nat}, ΣNat

extends Σ with a new constant 0 : λ → Nat , and ΠNat ,K(s) extends Π with
> : Nat Nat and a predicate terms′ : s

′ Nat for each s′ ∈ K(s). We let

SuHs = {(9)s′ , (10)s′ , (11)s′ | s
′ ∈ K(s)} (12)

Proposition 3. Let Ω be a signature, S be a theory, s ∈ S, and A be an ΩNat ,s-
structure which is a model of S. Assume that ANat = N, 0A = 0, and m >A

n ⇔ m >N n for all m, n ∈ ANat . If A |= SuHs, then hs′ is surjective for all
s′ ∈ K(s).

Given an extension Ω′ of a signature Ω, every Ω′-structure A′ defines an Ω-
structure A: just take As = A′

s for all s ∈ S, and then fA
w,s = fA′

w,s and P
A
w = PA′

w

for all w ∈ S∗, s ∈ S, f ∈ Σw,s, and P ∈ Πw. Thus, Proposition 3 is used to
guarantee surjectivity of h : TΣs′ → As′ , rather than h : TΣNat s′ → As′ .

5 Examples of Application with Positive Sentences

In this section we exemplify the use of Corollary 1 together with the approach
in Section 4 to deal with positive sentences (6), i.e., all literals are positive.

5.1 Complete Definedness and Commutativity

Consider the following Maude specification (hopefully self-explained, but see [5])
for the arithmetic operations in Example 1 together with function head, which
returns the head of a list of natural numbers:

mod ExAddMulHead is

sorts N LN . *** Sorts for numbers and lists of numbers

op Z : -> N . op suc : N -> N . ops add mul : N N -> N .

op head : LN -> N . op nil : -> LN . op cons : N LN -> LN .

vars x y : N . var xs : LN .

rl add(Z,x) => x . rl add(suc(x),y) => suc(add(x,y)) .

rl mul(Z,x) => Z . rl mul(suc(x),y) => add(y,mul(x,y)) .

rl head(cons(x,xs)) => x .

endm

1) Complete definedness. We claim head to be completely defined as follows:

(∀xs : LN)(∃x : N) head(xs) → x (13)

7

We disprove (13) by using Corollary 1. Due to the universal quantification of xs
in (13), we need to ensure that hLN : TΣLN → ALN is surjective for any structure
A we may use. We use Proposition 3. Since K(LN) = {N, LN} due to cons, whose
first argument is of sort N, SuHLN consists of the following sentences:

(∀x : N)(∃n : Nat) termN(x, n) (9)N
(∀x : N) termN(x, 0) ⇒ x = Z (10)N
(∀x : N)(∀n : Nat)(∃m : Nat)(∃y : N)(∃z : N)(∃ys : LN) (11)N
n > 0 ∧ termN(x, n) ⇒ n > m ∧ [termN(x,m) ∨
(termN(y,m) ∧ termN(z,m) ∧ termLN(ys,m) ∧
(x = suc(y) ∨ x = add(y, z) ∨ x = mul(y, z) ∨ x = head(ys)))]

(∀xs : LN)(∃n : Nat) termLN(xs, n) (9)LN
(∀xs : LN) termLN(xs, 0) ⇒ xs = nil (10)LN
(∀xs : LN)(∀n : Nat)(∃m : Nat)(∃y : N)(∃ys : LN) (11)LN
n > 0 ∧ termN(x, n) ⇒ n > m ∧ [termN(x,m) ∨
(termN(y,m) ∧ termLN(ys,m) ∧ xs = cons(y, ys))]

We obtain a model A of ExAddMulHead∪ SuHLN ∪ {¬(13)} with AGES. Sorts are
interpreted as follows: AN = ALN = {−1, 0} and ANat = N. For function symbols:

ZA = −1 nilA = 0 sucA(x) = x addA(x, y) = 0
mulA(x, y) = 0 consA(x, xs) = −1 headA(xs) = −xs− 1

For predicates, x →A
N
y ⇔ x ≥ y ∧ x ≥ 0, x →A

LN
y ⇔ x = y = −1, and both

x(→∗
N
)Ay and x(→∗

LN
)Ay are true. We can check surjectivity of hs : TΣs → As

(for s ∈ {N, LN}). For instance, we have:

[Z]A = −1 [add(Z, Z)]A = 0 for sort N
[cons(Z, nil)]A = −1 [nil]A = 0 for sort LN

2) Commutativity. It is well-known that both add and mul as defined by the
rules of R in Example 1 are commutative on ground terms, i.e., for all ground
terms s and t, add(s, t) =R add(t, s) and mul(s, t) =R mul(t, s), where =R is the
equational theory induced by the rules ℓ → r in R treated as equations ℓ = r.
Actually, by using Birkhoff’s theorem and the fact that R is confluent, we can
rephrase commutativity of add as joinability as follows:

(∀x)(∀y)(∃z) add(x, y) →∗ z ∧ add(y, x) →∗ z (14)

Remark 2. Proving commutativity of add andmul when defined byR in Example
1 by using Corollary 1 is possible (see Remark 1) but unlikely. We should first
define ϕ as ¬(14), i.e., ϕ is

(∃x)(∃y)(∀z) ¬(add(x, y) →∗ z) ∨ ¬(add(y, x) →∗ z) (15)

Since (15) contains two negative literals, Corollary 1 requires the use of N (→∗).

8

Since head is not completely defined, add and mul are not commutative in
ExAddMulHead. We prove this fact by disproving the sorted version of (14), i.e.,

(∀x : N)(∀y : N)(∃z : N) add(x, y) →∗ z ∧ add(y, x) →∗ z (16)

Due to the universal quantification of x and y in (16), we need to ensure that
hN : TΣN → AN is surjective. Since K(N) = {N, LN} due to head, we have SuHN =
SuHLN as above. AGES obtain a model A of ExAddMulHead∪ SuHN ∪ {¬(16)} as
follows: AN = {0, 1}, ALN = {−1, 0} and ANat = N. Also,

ZA = 1 nilA = −1 sucA(x) = x addA(x, y) = y
mulA(x, y) = x consA(x, xs) = x− 1 headA(xs) = xs+ 1
x→A

N
y ⇔ x = y x(→∗

N
)Ay ⇔ x = y x→A

LN
y ⇔ x = y x(→∗

LN
)Ay ⇔ true

5.2 Top-Termination

A TRS R is top-terminating if no infinitary reduction sequence performs in-
finitely many rewrites at topmost position Λ [7]. From a computational point of
view, top-termination is important in the semantic description of lazy languages
as it is an important ingredient to guarantee that every initial expression has an
infinite normal form [7,8]. Accordingly, given a dummy sort S, the negation of

(∃x : S)(∀n ∈ N)(∃y : S) x(→∗ ◦
Λ
→)ny (17)

(which claims for the existence of a term with infinitely many rewriting steps
at top) captures top-termination. We introduce a new predicate →⋆,Λ for the

composition →∗ ◦
Λ
→ of the many-step rewriting relation →∗ (defined as usual,

i.e., by the whole theory R associated to R) and topmost rewriting
Λ
→ defined

by a theory RΛ = {(∀x : S) ℓ
Λ
→ r | ℓ → r ∈ R}. Sequences s →n

⋆,Λ t meaning
that s →⋆,Λ-reduces into t in n+ 1 →⋆,Λ-steps are defined as follows:

(∀x, y, z : S) x→∗ y ∧ y
Λ
→ z ⇒ x→0

⋆,Λ z (18)

(∀x, y, z : S)(∀n ∈ N) x→0
⋆,Λ y ∧ y →n

⋆,Λ z ⇒ x→n+1
⋆,Λ z (19)

Overall, the sentence ϕ to be disproved is:

(∃x : S)(∀n : Nat)(∃y : S) x→n
⋆,Λ y (20)

Remark 3. We use N in (17) but Nat in (20). Indeed, (17) is not a valid sentence
because N is not first-order axiomatizable, see, e.g. [11, Section 2.2]. This is
consistent with the well-known fact that termination (or top-termination) cannot
be encoded in first-order logic [22, Section 5.1.4]. We can use (20) together with
Corollary 1 provided that Nat is interpreted as N. This is possible with AGES.

9

Example 2. Consider the following (nonterminating) TRS R [8, Section 9.5]:

non → f(g, f(non, g)) (21)

g → a (22)

f(a, x) → a (23)

f(b, b) → b (24)

f(b, a) → b (25)

The associated theory RtopT is RtopT = R∪RΛ ∪ {(18), (19)}, where RΛ is

non
Λ
→ f(g, f(non, g)) (26)

g
Λ
→ a (27)

(28)

(∀x : S) f(b, x)
Λ
→ b (29)

f(b, b)
Λ
→ b (30)

f(b, a)
Λ
→ b (31)

Note that (20) only requires that the homomorphism mapping terms of sort
Nat to N is surjective, which is automatically achieved by AGES. The structure
A with AS = {−1, 0, 1}, ANat = N, function symbols interpreted by: aA = 1,
bA = 1, gA = 0, nonA = −1, and fA(x) = 0; and predicate symbols as follows:

x→A y⇔ y ≥ x ∧ x+ y ≥ −1 x(→∗)Ay⇔ y ≥ x

x(
Λ
→)Ay⇔ y > x x(→n

⋆,Λ)
Ay⇔ y > x+ n

is a model of RtopT ∪ {¬(20)} and proves top-termination of R.

6 Refutation Witnesses

In logic, a witness for an existentially quantified sentence (∃x)ϕ(x) is a specific
value b to be substituted by x in ϕ(x) so that ϕ(b) is true (see, e.g., [2, page
81]). Similarly, we can think of a value b such that ¬ϕ(b) holds as a witness of
(∃x)¬ϕ(x) or as a refutation witness for (∀x)ϕ(x); we can also think of b as a
counterexample to (∀x)ϕ(x) [13, page 284]. Note, however, that witnesses that
are given as values b belonging to an interpretation domain A can be meaning-
less for the user who is acquainted with the first-order language Ω but not so
much with abstract values from A (which is often automatically synthesized by
using some tool). Users can be happier to deal with terms t which are somehow
connected to witnesses b by a homomorphism, so that tA = b. Corollary 1 per-
mits a refutation of ϕ by finding a model A of ¬ϕ to conclude that I |= ¬ϕ. We
want to obtain instances of ϕ to better understand unsatisfiability of ϕ. In this
section we investigate this problem.

The negation ¬(6) of (6), i.e., of (Q1x1 : s1) · · · (Qkxk : sk)
∨m

i=1

∧ni

j=1 Lij is

(Q1x1 : s1) · · · (Qkxk : sk)
m
∧

i=1

ni
∨

j=1

¬Lij(x1, . . . , xk) (32)

where Qi is ∀ whenever Qi is ∃ and Qi is ∃ whenever Qi is ∀. We assume η ≤ k
universal quantifiers in (32) with indices U = {υ1, . . . , υη} ⊆ {1, . . . , k} and
hence k−η existential quantifiers with indices E = {ǫ1, . . . , ǫk−η} = {1, . . . , k}−

10

U . In the following η denotes k − η. For each ǫ ∈ E, we let Uǫ = {υ ∈ U |
υ < ǫ} be the (possibly empty) set of indices of universally quantified variables
in (32) occurring before xǫ in the quantification prefix of (32). Let ηǫ = |Uǫ|.
Note that Uǫ1 ⊆ Uǫ2 ⊆ · · · ⊆ Uǫη . Let U∃ be the set of indices of universally
quantified variables occurring before some existentially quantified variable in
the quantification prefix of (32). Note that U∃ is empty whenever υ1 > ǫk−η

(no existential quantification after a universal quantification); otherwise, U∃ =
{υ1, . . . , υ∃} for some υ∃ ≤ υη. Accordingly, U∀ = U−U∃ = {ǫη+1, . . . , k} is the
set of indices of universally quantified variables occurring after all existentially
quantified variables in the quantification prefix of (32). Note that U∀ is empty
whenever ǫ1 > υη (no universal quantification after an existential quantification).

Most theorem provers transform sentences into universally quantified formu-
las by Skolemization (see, e.g., [12]). Thus, if k > η, i.e., (32) contains existential
quantifiers, we need to introduce Skolem function symbols skǫ : wǫ → sǫ for each
ǫ ∈ E, where wǫ is the (possibly empty) sequence of ηǫ sorts indexed by Uǫ. Note
that skǫ is a constant if ηǫ = 0. The Skolem normal form of (32) is

(∀xυ1
: sυ1

) · · · (∀xυη
: sυη

)

m
∧

i=1

ni
∨

j=1

¬Lij(e1, . . . , ek) (33)

where for all 1 ≤ q ≤ k, (i) eq ≡ xq if q ∈ U and (ii) eq ≡ skq(xηq
) if q ∈ E,

where xηq
is the sequence of variables xν1 , . . . , xνηq . If E 6= ∅ (i.e., (32) and

(33) differ), then (33) is a sentence of an extended signature Ωsk = (S,Σsk, Π)
where Σsk extends Σ with skolem functions. Since (33) logically implies (32) [2,
Section 19.2], every model A of (33) is a model of (32) as well.

Definition 1 (Set of refutation witnesses). Using the notation developed in
the previous paragraphs, let A be an Ωsk-structure such that hsq is surjective for
all q ∈ U∃ ∪ E. The Ωsk-sentence (33) is given a set of refutation witnesses Φ
consisting of Ω-sentences φα for each valuation α of the variables xυ1

, . . . , xυ∃

indexed by U∃; each φα is (nondeterministically) defined as follows:

(∀xǫη+1 : sǫη+1) · · · (∀xk : sk)

m
∧

i=1

ni
∨

j=1

¬Lij(e
′
1, . . . , e

′
k) (34)

where for all 1 ≤ q ≤ k, (i) e′q ≡ xq if q ∈ U∀ and (ii) e′q ≡ t if q ∈ U∃ ∪ E and
t ∈ TΣsq is such that [t]A = [eq]

α
A.

Note that, in Definition 1 we could emphfail to find the necessary terms t ∈ TΣsq

if hsq is not surjective. Note also that, whenever E is empty, Φ is a singleton
consisting of (34) which coincides with (33). We have the following:

Proposition 4. For every Ωsk-structure A, A |= (33) if and only if A |= Φ.

Refutation witnesses are built from symbols in the original signature Ω only. We
can use them as more intuitive counterexamples to the refuted property ϕ.

11

Proposition 5. Let Ω be a signature, S be a theory, ϕ be a sentence (6), and
A be a model of S such that for all negative literals Lij = ¬P (t) with P ∈ Πw

and substitutions σ, if h(σ(t)) ∈ PA then σ(t) ∈ P I. For all φ ∈ Φ, I |= φ.

Corollary 2. If (6) is positive, then for all refutation witnesses φ ∈ Φ, I |= φ.

Example 3. Consider ExAddMulHead in Section 5. The refutation of (13) using
AGES actually proceeds by skolemization of the negation of (13), i.e., of

(∃xs : LN)(∀x : N) ¬(head(xs) → x) (35)

With regard to (35), we have E = {1}, U∃ = ∅ and U∀ = {2}, where 1 and
2 refer to variables xs and x, respectively. Accordingly, υ∃ = 0. The only sort
involved in the variables indexed by U∃ ∪E is LN. Since variables of sort LN are
universally quantified in (13), the application of Corollary 1 in Section 5 already
required surjectivity of hLN. The Skolem normal form of (35) is:

(∀x : N) ¬(head(skxs) → x) (36)

where skxs is a new constant of sort LN. The structure A computed by AGES

is actually a model of R ∪ SuHLN ∪ {(36)}, for SuHLN in Section 5. For skxs, we
have skAxs = 0. There is a single (empty) valuation α of variables indexed by
U∃ (which is empty). Hence, Φ = {φα} is a singleton. According to Definition
1, since [nil]A = 0 = [skxs]A, the following sentence could be associated to the
refutation witness φα: (∀x : N) ¬(head(nil) → x).

Example 4. With regard to the computation of refutation witnesses for R in
Example 2, we start with the negation of (17), i.e.,

(∀x : S)(∃n : Nat)(∀y : S) ¬(x(→∗ ◦
Λ
→)ny) (37)

We have E = {2}, U∃ = {1} and U∀ = {3}. The Skolem normal form of (37) is

(∀x : S)(∀y : S) ¬(x(→∗ ◦
Λ
→)skn(x)y) (38)

where skn : S → Nat is a new (monadic) function symbol. Since the sorts for
variables indexed by U∃∪E are S and Nat , we require surjectivity of hS and hNat .
This is achieved by using SuHS and interpreting Nat as N as done in AGES. The
structure A in Example 2 is a model ofRtopT ∪SuHS∪{(38)}. The interpretation
obtained for skn is

skAn (x) = 1− x

Now we can compute refutation witnesses for (38). Since Uǫ = {1} is a singleton
whose index refers to a variable x of sort S and AS = {−1, 0, 1}, we have to deal
with three valuation functions for the only variable x to be considered:

α−1(x) = −1 α0(x) = 0 α1(x) = 1

We have Φ = {φα−1
, φα0

, φα1
}, where φα−1

is (∀y : S)¬(non(→∗ ◦
Λ
→)2y), φα0

is

(∀y : S)¬(g(→∗ ◦
Λ
→)1y), and φα1

is (∀y : S)¬(a(→∗ ◦
Λ
→)0y).

Note that, since fA(x) = 0, we could also write φα0
as (∀y : S) ¬(f(t)(→∗ ◦

Λ
→)1y)

for every ground term t. This gives additional, complementary information.

12

7 Example of Application with General Sentences

Consider a well-known example of a locally confluent but nonconfluent TRS R:

b → a b → c c → b c → d

Example 5 (Local confluence of R). Local confluence corresponds to ϕWCR in
Table 1. As explained in Remark 1, we start with ϕWCR = ¬ϕWCR i.e.,

(∃x, y, z : S)(∀u : S) (x → y ∧ x → z ∧ ¬(x →
∗
u)) ∨ (x → y ∧ x → z ∧ ¬(z →

∗
u))(39)

Due to the universal quantifier, hS : TΣS → AS must be surjective. We can
achieve this by adding the following sentence SuHT

S
for T = {a, b, c, d}:

(∀x : S) x = a ∨ x = b ∨ x = c ∨ x = d (40)

Due to the negative literals ¬(x →∗ u) and ¬(z →∗ u), we consider N , repre-
senting the forbidden many-step rewriting steps, explicitly given by:

N = {¬(a →∗ b), ¬(a →∗ c), ¬(a →∗ d), ¬(d →∗ a), ¬(d →∗ b), ¬(d →∗ c) }

We apply Corollary 1 to prove that ¬ϕWCR (i.e., ϕWCR) holds by obtaining
a model of R ∪ SuHT

S
∪ N ∪ {ϕWCR} with Mace4.2 The structure has domain

AS = {0, 1, 2, 3}; constants are interpreted as follows: aA = 0, bA = 1, cA = 3,
and dA = 2. With regard to predicate symbols, we have:

x→A y = {(1, 0), (1, 3), (3, 1), (3, 2)} x(→∗)Ay = {(1, x), (3, x) | x ∈ AS}

This proves R locally confluent.

Example 6 (Nonconfluence of R). In order to disprove confluence of R, which
is represented by ϕCR in Table 1, we first write ϕCR in the form (6), i.e.,

(∀x, y, z : S)(∃u : S) ¬(x →∗ y) ∨ ¬(x→∗ z) ∨ (y →∗ u ∧ z →∗ u) (41)

Due to the universal quantification and negative literals, we use SuHT
S
and N as

in Example 5. We obtain a model A of R∪SuHT
S
∪N ∪{¬ϕCR} with Mace4. The

domain is AS = {0, 1, 2} and symbols are interpreted by: aA = 0, bA = cA = 1,
dA = 2, x →A y ⇔ x = 1, and x(→∗)Ay ⇔ x = y ∨ x = 1. This proves
nonconfluence of R. With regard to the refutation witnesses, ¬ϕCR is

(∃x, y, z : S)(∀u : S) x→∗ y ∧ x→∗ z ∧ ¬(y →∗ u ∧ z →∗ u) (42)

and its Skolem normal form is

(∀u : S) skx →∗ sky ∧ skx →∗ skz ∧ ¬(sky →∗ u ∧ skz →∗ u) (43)

Mace4 yields skAx = 1, skAy = 0 and skAz = 2; Φ consists of a single sentence; e.g.,

(∀u : S) b →∗ a ∧ b →∗ d ∧ ¬(a →∗ u ∧ d →∗ u) (44)

but also: (∀u : S) c →∗ a∧ c →∗ d∧ ¬(a →∗ u∧ d →∗ u). Indeed, they represent
the two possible cases of nonconfluent behavior in R.
2 This proves R ground locally confluent, i.e., variables in ϕWCR refer to ground terms
only; since R is a ground TRS, local confluence and ground local confluence coincide.

13

Example 7 (Normalizing TRS). R is not terminating, but we can prove it nor-
malizing (i.e., every term has a normal form) by disproving ϕWN , for ϕWN in
Table 1. Therefore, ϕWN is (∃x : S)(∀y : S)(∃z : S) (¬(x →∗ y) ∨ y → z). We
guarantee surjectivity by using SuHT

S
in Example 5; we also use N in Example

5. Mace4 obtains a model A of R ∪ SuHT
S
∪ N ∪ {ϕWN } with AS = {0, 1, 2},

aA = 0, bA = cA = 1, dA = 2, x→A y ⇔ x = 1, and x(→∗)Ay ⇔ x = y∨x = 1.

8 Related Work

In [14, Section 6] we already compared our approach to existing techniques
and tools for the so-called First-Order Theory of Rewriting [6], which applies
to restricted classes of TRSs and formulas. In [16], we show that our semantic
approach is practical when applied to arbitrary (Conditional) TRSs.

McCune’s Prover9/Mace4 are popular automated systems for theorem prov-
ing in first-order and equational logic. Given a theory S and a goal or statement
ϕ, Prover9 tries to prove that S ⊢ ϕ holds. The generator of models Mace4 com-
plements Prover9 as follows: “If the statement is the denial of some conjecture,
any structures found by Mace4 are counterexamples to the conjecture”.3 Accord-
ingly, the user introduces ϕ in the goal section of Mace4, but the system seeks
a model of S ∪ {¬ϕ}. Indeed, as discussed in Section 1, if A |= S ∪ {¬ϕ} holds,
then S ⊢ ϕ does not hold. But, unless ϕ is an ECBCA, this does not necessarily
mean that ϕ does not hold of a program P with S = P ! Consider the following
‘misleading’ session with Mace4 that ‘disproves ’ commutativity of the addition.

Example 8. Consider R in Example 1. Mace4 obtains a model A of R∪{¬(14)}
with domain A = {0, 1}, and function and predicate symbols as follows: 0A = 0,

sA(x) = x, addA(x, y) =

{

1 if x = 0 ∧ y = 1
0 otherwise

, mulA(x, y) = 0, and →A and

(→∗)A both interpreted as the equality. Additionally, Mace4 also displays the
following: c1A = 0 and c2A = 1. These c1 and c2 are new Skolem symbols (but
unexpected for most users!). In practice, Mace4 finds a model for the Skolem
normal form of ¬(14), which is

(∀z) ¬(add(c1, c2) →∗ z ∧ add(c2, c1) →∗ z) (45)

Indeed, A is a model of R∪{(45)}. But we should not conclude (as suggested by
the aforementioned sentences in Mace4 manual) that add is not commutative!

The problem in Example 8 is that h : IR → A is not surjective. For instance, no
ground term t ∈ TΣ satisfies tA = 1; note that c1, c2 /∈ Σ. Since proving validity
in IS is not the main purpose ofMace4, no warning in its documentation prevents
the prospective user to give credit to the ‘refutation’ of (ground) commutativ-
ity for the addition computed by Mace4. We believe that our work is helpful
to clarify the use of such tools, and even improve it by adding (for instance)
sentences reinforcing surjectivity to avoid the problem discussed above. For in-
stance, Mace4 obtains no model of R∪ SuHT ∪ {(45)} with, e.g., T = {0, s(0)}.

3 https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/mace4.html

14

https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/mace4.html

Proofs by Satisfiability vs. Theorem Proving. In order to further clarify
the differences between our approach and the use of first-order theorem proving
tools, consider the CTRS R in [14, Example 1], consisting of the rules

b → a (46) a → b ⇐ c → b (47)

Its associated Horn theory R is:

(∀x) x→∗ x (48)

(∀x, y, z) x→ y ∧ y →∗ z ⇒ x→∗ z (49)

b → a (50)

c →∗ b ⇒ a → b (51)

We consider some simple tests regarding goals b → a and a → b and their nega-
tions. We tried such four goals with the following theorem provers: Alt-Ergo,4

Prover9/Mace4, PDL-tableau,5 and Princess6 (most of them with a web-interface).
Besides attempting a proof of each goal with respect to R, tools Alt-Ergo,Mace4,
and Princess can also generate models of the negation of the tested goal when
the proof attempt fails. The following table summarizes the results of our test:

Goal Alt-Ergo Mace4 PDL-tableau Princess

ϕ IR |= ϕ R⊢ϕ A|=¬ϕ R⊢ϕ A|=¬ϕ R⊢ϕ A|=¬ϕ R⊢ϕ A|=¬ϕ
1 b → a true Y N Y N Y – Y N
2 ¬(b → a) false N Y N Y N – N Y
3 a → b false N Y N Y N – N Y
4 ¬(a → b) true N Y N Y N – N Y

Goal ¬(a → b) in row 4 is not directly proved by any tool. Indeed, since ¬(a → b)
is not a logical consequence of R (see [14, Example 2]), R ⊢ ¬(a → b) does not
hold. Our satisfiability approach can be used to formally prove that R cannot
reduce a into b, i.e., that IR |= ¬(a → b) (or a 6→R b) holds: from row 3 we
see that A |= ¬(a → b) holds for the models A of R computed by some of the
tools. By Corollary 1, the desired conclusion a 6→R b follows. Note also that
row 4 reports on the ability of some tools to obtain models of a → b. However,
Corollary 1 cannot be used to conclude that a →R b holds (which is obviously
wrong): since ϕ in row 4 is a negative literal, condition (b) in Corollary 1 must
be fulfilled before being able to conclude IR |= a → b from A |= a → b for some
model A of R. But this is not the case in our test set.

Although Remark 1 explains how an arbitrary program property ϕ can be
proved by using Corollary 1 (see also Section 7), from a practical point of view
we better think of our approach as complementary to the use of first-order proof
techniques and tools. Provability of ϕ (i.e., S ⊢ ϕ) implies that IS |= ϕ holds.
Thus, as usual, a proof of ϕ with respect to S implies that a program P with
S = P has property ϕ. However, as discussed above, showing that S ⊢ ϕ or
S ⊢ ¬ϕ holds is often impossible. We can try to prove IS |= ¬ϕ by using
Corollary 1, though. For positive sentences ϕ, this is often affordable.

4 https://alt-ergo.ocamlpro.com/
5 http://www.cs.man.ac.uk/~schmidt/pdl-tableau/
6 http://www.philipp.ruemmer.org/princess.shtml

15

https://alt-ergo.ocamlpro.com/
http://www.cs.man.ac.uk/~schmidt/pdl-tableau/
http://www.philipp.ruemmer.org/princess.shtml

9 Conclusions and Future Work

We have shown how to prove properties ϕ of computational systems whose se-
mantics can be given as a first-order theory S. Our proofs by satisfiability proceed
(see Remark 1) by just finding a model A of S ∪ Z ∪ {ϕ} where Z is an aux-
iliary theory representing the requirements (a) and (b) in Corollary 1 (referred
to ¬ϕ), so that A |= S ∪ Z ∪ {ϕ} implies IS |= ϕ. Surjectivity of the interpre-
tation homomorphisms (requirement (a) in Corollary 1) is ensured if Z includes
the appropriate theory SuH (see Section 4); and requirement (b), for dealing
with negative literals, is fulfilled if Z includes N in Proposition 1. Our results
properly subsume the ones in [14], which concern existentially closed boolean
combinations of atoms only. We have also introduced the notion of refutation
witness which is useful to obtain counterexamples by using the symbols in the
first-order language rather than values of the computed model.

From a theoretical point of view, the idea of proving program properties as
satisfiability (see Remark 1) is appealing as it emphasizes the role of abstrac-
tion (introduced by semantic structures) in theorem proving and logic-based
program analysis. However, the requirement of surjectivity of the interpretation
homomorphisms and the use of theoriesN with negative information about some
of the predicates introduce additional difficulties in the model generation pro-
cess. Investigating methods for the practical implementation of our techniques,
and also finding specific areas of application where our approach can be useful
(as done in [16], for instance) is an interesting subject for future work.

Also, our research suggests that further investigation on the generation of
models for many-sorted theories that combines the use of finite and infinite do-
mains is necessary. For instance, [15] explains how to generate such models by
interpreting the sort, function, and predicate symbols by using linear algebra
techniques. This is implememented in AGES. Domains are defined as the solu-
tions of matrix inequalities, possibly restricted to an underlying set of values
(e.g., Z); thus, finite and infinite domains can be obtained as particular cases
of the same technique. Since piecewise definitions are allowed, we could even-
tually provide fully detailed descriptions of functions and predicates by just
adding more pieces to the interpretations. However, such a flexibility is expen-
sive. In contrast, Mace4 is based on a different principle (similar to [12]) and it
is really fast, but only finite domains can be generated. This is a problem, for
instance, when using Proposition 3 to guarantee surjectivity of homomorphisms
hs : TΣs → As. Even though As is finite, we still need to be able to interpret
Nat as N, which is not possible with Mace4. For this reason, the examples in
Section 5 (where the computed structures A have finite domains for the ‘proper’
sorts N, LN, and S, and only Nat is interpreted as an infinite set) could not be
handled with Mace4, or with similar tools that are able to deal with sorts (e.g.,
SEM [24] or the work in [21]) but which generate finite domains only.

Acknowledgements. I thank the anonymous referees for their comments and
suggestions. I also thank Philipp Rümmer and Mohamed Iguernlala for their
clarifying remarks about the use of Princess and Alt-Ergo, respectively.

16

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. G.S. Boolos, J.P. Burgess, and R.C. Jeffrey. Computability and Logic, fourth
edition. Cambridge University Press, 2002.

3. R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 351(1):386-414, 2006.

4. K.L. Clark. Predicate Logic as a Computational Formalism. PhD. Thesis, Research
Monograph 79/59 TOC, Department of Computing, Imperial College of Science,
and Technology, University of London, December 1979.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude – A High-Performance Logical Framework. LNCS 4350,
Springer-Verlag, 2007.

6. M. Dauchet and S. Tison. The Theory of Ground Rewrite Systems is Decidable.
In Proc. of LICS’90, pages 242-248, IEEE Press, 1990

7. N. Dershowitz, S. Kaplan, and D. Plaisted. Rewrite, rewrite, rewrite, rewrite,
rewrite, . . . Theoretical Computer Science 83:71-96, 1991.

8. J. Endrullis and D. Hendriks. Lazy productivity via termination. Theoretical

Computer Science 412:3203-3225, 2011.
9. J. Goguen and J. Meseguer. Models and Equality for Logical Programming. In

Proc. of TAPSOFT’87, LNCS 250:1-22, Springer-Verlag, 1987.
10. R. Gutiérrez, S. Lucas, and P. Reinoso. A tool for the automatic generation of

logical models of order-sorted first-order theories. In Proc. of PROLE’16, pages
215-230, 2016. Tool available at http://zenon.dsic.upv.es/ages/.

11. W. Hodges. Model Theory. Cambridge University Press, 1993.
12. S. Kim and H. Zhang. ModGen: Theorem Proving by Model Generation. In Proc.

of AAAI’94, pages 162-167, AAAI Press/MIT Press, 1994.
13. S.C. Kleene. Mathematical Logic. John Wiley & Sons, 1967 (Dover, 2002).
14. S. Lucas. Analysis of Rewriting-Based Systems as First-Order Theories. In Revised

Selected papers from LOPSTR 2017, LNCS 10855:180-197, 2018.
15. S. Lucas and R. Gutiérrez. Automatic Synthesis of Logical Models for Order-Sorted

First-Order Theories. Journal of Automated Reasoning 60(4):465–501, 2018.
16. S. Lucas and R. Gutiérrez. Use of logical models for proving infeasibility in term

rewriting. Information Processing Letters, 136:90-95, 2018.
17. W. McCune Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/,

2005–2010.
18. J. Meseguer. Twenty years of rewriting logic. Journal of Logic and Algebraic

Programming 81:721-781, 2012.
19. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, Apr. 2002.
20. R. Reiter. On Closed World Data Bases. In Logic and Data Bases, pages 119–140,

Plenum Press, 1978.
21. G. Reger, M. Suda, and A. Voronkov. Finding Finite Models in Multi-sorted First-

Order Logic. In Proc. of SAT 2016, LNCS 9710:323-341, 2016.
22. S. Shapiro. Foundations without Foundationalism: A Case for Second-Order Logic.

Clarendon Press, 1991.
23. H. Wang. Logic of many-sorted theories. Journal of Symbolic Logic 17(2):105-116,

1952.
24. J. Zhang and H. Zhang. Generating Models by SEM (System Description). In

Proc. of CADE’96, LNCS 1104:308-312, 1996.

17

http://zenon.dsic.upv.es/ages/

	Proving Program Properties as First-Order Satisfiability

