
ar
X

iv
:1

80
8.

05
09

7v
2

 [
cs

.P
L

]
 2

8
N

ov
 2

01
8

Homeomorphic Embedding modulo Combinations of

Associativity and Commutativity Axioms ⋆

María Alpuente1, Angel Cuenca-Ortega1,3, Santiago Escobar1, and José Meseguer2

1 DSIC-ELP, Universitat Politècnica de València, Spain.

{alpuente,acuenca,sescobar}@dsic.upv.es
2 University of Illinois at Urbana-Champaign, USA. meseguer@illinois.edu

3 Universidad de Guayaquil, Ecuador. angel.cuencao@ug.edu.ec

Abstract. The Homeomorphic Embedding relation has been amply used for defining

termination criteria of symbolic methods for program analysis, transformation, and veri-

fication. However, homeomorphic embedding has never been investigated in the context

of order-sorted rewrite theories that support symbolic execution methods modulo equa-

tional axioms. This paper generalizes the symbolic homeomorphic embedding relation

to order–sorted rewrite theories that may contain various combinations of associativity

and/or commutativity axioms for different binary operators. We systematically measure

the performance of increasingly efficient formulations of the homeomorphic embedding

relation modulo associativity and commutativity axioms. From our experimental results,

we conclude that our most efficient version indeed pays off in practice.

1 Introduction

Homeomorphic Embedding is a control mechanism that is commonly used to ensure termina-

tion of symbolic methods and program optimization techniques. Homeomorphic embedding

is a structural preorder relation under which a term t ′ is greater than (i.e., it embeds) another

term t represented by t E t ′ if t can be obtained from t ′ by deleting some symbols of t ′. For

instance, v = s(0+ s(X)) ∗ s(X +Y) embeds u = s(X) ∗ s(Y). The usefulness of homeomor-

phic embedding for ensuring termination is given by the following well-known property of

well-quasi-orderings: given a finite signature, for every infinite sequence of terms t1, t2, . . . ,
there exist i < j such that ti E t j. Therefore, if we iteratively compute a sequence t1, t2, . . . , tn,

we can guarantee finiteness of the sequence by using the embedding as a whistle: whenever a

new expression tn+1 is to be added to the sequence, we first check whether tn+1 embeds any

of the expressions that are already in the sequence. If that is the case, the computation must

be stopped because the whistle (E) signals (potential) non-termination. Otherwise, tn+1 can be

safely added to the sequence and the computation proceeds.

In [2], an order-sorted extension of homeomorphic embedding modulo equational axioms,

such as associativity and commutativity, was defined as a key component of the symbolicï¿ 1
2
partial

evaluator Victoria. Unfortunately, the formulation in [2] was done with a concern for simplicity

in mind and degrades the tool performance because the proposed implementation of equational

homeomorphic embedding did not scale well to realistic problems. This was not unexpected

since other equational problems (such as equational matching, equational unification, or equa-

tional least general generalization) are typically much more involved than their corresponding

⋆ This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grant

TIN 2015-69175-C4-1-R, and by Generalitat Valenciana under grant PROMETEOII/2015/013. Jose

Meseguer was partially supported by NRL under contract number N00173-17-1-G002. Angel Cuenca-

Ortega has been supported by the SENESCYT, Ecuador (scholarship program 2013)

http://arxiv.org/abs/1808.05097v2

“syntactic” counterparts, and achieving efficient implementations has required years of signif-

icant investigation effort.

Our contribution. In this paper, we introduce four different formulations of order-sorted

homeomorphic embedding modulo axioms in rewrite theories that may contain sorts, subsort

polymorphism, overloading, and rewriting with (conditional) rules and equations modulo a set

B of equational axioms, and we compare their performance. We propose an order-sorted, equa-

tional homeomorphic embedding formulationEsml
B that runs up to 5 orders of magnitude faster

than the original definition of EB in [2]. For this improvement in performance, we take advan-

tage of Maude’s powerful capabilities such as the efficiency of deterministic computations with

equations versus non-deterministic computations with rewriting rules, or the use of non-strict

definitions of the boolean operators versus more speculative standard boolean definitions [5].

Plan of the paper. After some preliminaries in Section 2, Section 3 recalls the (order-sorted)

homeomorphic equational embedding relation of [2] that extends the “syntactically simpler”

homeomorphic embedding on nonground terms to the order-sorted case modulo equational

axioms. Section 4 provides two goal-driven formulations for equational homeomorphic em-

bedding: first, a calculus for embeddability goals that directly handles the algebraic axioms

in the deduction system, and then a reachability oriented characterization that cuts down the

search space by taking advantage of pattern matching modulo associativity and commuta-

tivity axioms. Section 5 is concerned with an efficient meta-level formulation of equational

homeomorphic embedding that relies on the classical flattening transformation that canonizes

terms w.r.t. associativity and/or commutativity axioms (for instance, 1+(2+ 3) gets flattened

to +(1,2,3)). An improvement of the algorithm is also achieved by replacing the classical

boolean operators by short-circuit, strategic versions of these operators. We provide an exper-

imental performance evaluation of the proposed formulations showing that we can efficiently

deal with realistic embedding problems modulo axioms.

2 Preliminaries

Given an order-sorted signature Σ , with a finite poset of sorts (S,≤), we consider an S-sorted

family X = {Xs}s∈S of disjoint variable sets. TΣ (X)s and TΣ s denote the sets of terms and

ground terms of sorts s, respectively. We also write TΣ (X) and TΣ for the corresponding term

algebras. In order to simplify the presentation, we often disregard sorts when no confusion can

arise.

A position p in a term t is represented by a sequence of natural numbers (Λ denotes the

empty sequence, i.e., the root position). Positions are ordered by the prefix ordering: p ≤ q if

there exists w such that p.w = q. Given a term t, we let Pos(t) and N V Pos(t) respectively

denote the set of positions and the set of non-variable positions of t (i.e., positions where a

variable does not occur). t|p denotes the subterm of t at position p, and t[u]p denotes the result

of replacing the subterm t|p by the term u. The set of variables occurring in a term t is denoted

by V ar(t).
A substitution σ is a sorted mapping from a finite subset of X to TΣ (X). Substitutions are

written as σ = {X1 7→ t1, . . . ,Xn 7→ tn} where the domain of σ is Dom(σ) = {X1, . . . ,Xn} and

the set of variables introduced by terms t1, . . . , tn is written Ran(σ). The identity substitution is

id. Substitutions are homomorphically extended to TΣ (X). The application of a substitution σ

to a term t is called an instance of t and is denoted by tσ . For simplicity, we assume that every

substitution is idempotent, i.e., σ satisfies Dom(σ)∩Ran(σ) = /0. Substitution idempotency

2

ensures (tσ)σ = tσ . The restriction of σ to a set of variables V is denoted σ |V . Composition

of two substitutions is denoted by σσ ′ so that t(σσ ′) = (tσ)σ ′.

A Σ -equation is an unoriented pair t = t ′, where t, t ′ ∈TΣ (X)
s

for some sort s ∈ S. Given

Σ and a set E of Σ -equations, order-sorted equational logic induces a congruence relation =E

on terms t, t ′ ∈ TΣ (X) (see [4]). An equational theory (Σ ,E) is a pair with Σ being an

order-sorted signature and E a set of Σ -equations. We omit Σ when no confusion can arise.

A substitution θ is more (or equally) general than σ modulo E , denoted by θ ≤E σ , if

there is a substitution γ such that σ =E θγ , i.e., for all x ∈ X ,xσ =E xθγ . A substitution σ is

called a renaming if σ = {X1 7→Y1, . . . ,Xn 7→ Yn}, the sorts of Xi and Yi coincide, and variables

Y1, . . . ,Yn are pairwise distinct. The renaming substitution σ is a renaming for expression E if

(V ar(E)−{X, . . . ,Xn})∩{Y1, . . . ,Yn}= /0.

An E-unifier for a Σ -equation t = t ′ is a substitution σ such that tσ =E t ′σ . An E-

unification algorithm is complete if for any equation t = t ′ it generates a complete set of

E-unifiers, which is defined by the property that the set of all E-instances of its elements is

exactly the set of all E-unifiers. Note that this set does not need to be finite. A unification al-

gorithm is said to be finitary and complete if it always terminates after generating a finite and

complete set of unifiers.

A rewrite theory is a triple R =(Σ ,E,R), where (Σ ,E) is the equational theory modulo that

we rewrite and R is a set of rewrite rules. Rules are of the form l → r where terms l,r ∈TΣ (X)
s

for some sort s are respectively called the left-hand side (or lhs) and the right-hand side (or rhs)

of the rule and V ar(r)⊆ V ar(l). Let →⊆ A×A be a binary relation on a set A. We denote its

transitive closure by →+, and its reflexive and transitive closure by →∗.

We define the one-step rewrite relation on TΣ (X) for the set of rules R as follows: t →R t ′

iff there is a position p ∈ Pos(t), a rule l → r in R, and a substitution σ such that t|p = lσ

and t ′ = t[rσ]p. The relation →R/E for rewriting modulo E is defined as =E ◦ →R ◦ =E . A

term t is called R/E-irreducible iff there is no term u such that t →R/E u. A substitution σ is

R/E-irreducible if, for every x ∈ X , xσ is R/E-irreducible. We say that the relation →R/E is

terminating if there is no infinite sequence t1 →R/E t2 →R/E · · · tn →R/E tn+1 · · · . We say that

the relation →R/E is confluent if, whenever t →∗
R/E

t ′ and t →∗
R/E

t ′′, there exists a term t ′′′

such that t ′ →∗
R/E

t ′′′ and t ′′ →∗
R/E

t ′′′. We say that →R/E is convergent if it is confluent and ter-

minating. An order-sorted rewrite theory (Σ ,E,R) is convergent (resp. terminating, confluent)

if the relation →R/E is convergent (resp. terminating, confluent). In a confluent, terminating,

order-sorted rewrite theory, for each term t ∈ TΣ (X), there is a unique (up to E-equivalence)

R/E-irreducible term t ′ that can be obtained by rewriting t to R/E-irreducible or normal form,

which is denoted by t →!
R/E

t ′, or t!R/E when t ′ is not relevant.

Since E-congruence classes can be infinite, →R/E -reducibility is undecidable in general.

Therefore, R/E-rewriting is usually implemented by R,E-rewriting. We define the relation

→R,E on TΣ (X) by t →p,R,E t ′ (or simply t →R,E t ′) iff there is a non-variable position p ∈
PosΣ (t), a rule l → r in R, and a substitution σ such that t|p =E lσ and t ′ = t[rσ]p. To ensure

completeness of R,E-rewriting w.r.t. R/E-rewriting, we require strict coherence, ensuring that

=E is a bisimulation for R,E-rewriting [15]: for any Σ -terms u,u′,v if u =E u′ and u →R,E v,

then there exists a term v′ such that u′ →R,E v′ and v =E v′. Note that, assuming E-matching

is decidable, →R,E is decidable and notions such as confluence, termination, irreducible term,

and normalized substitution, are defined for →R,E straightforwardly [15]. It is worth noting

that Maude automatically provides B-coherence completion for rules and equations [15].

Algebraic structures often involve axioms like associativity (A) and/or commutativity (C)

of function symbols, which cannot be handled by ordinary term rewriting but instead are han-

dled implicitly by working with congruence classes of terms. This is why often an equational

theory E is decomposed into a disjoint union E = E0 ⊎B, where the set E0 consists of (con-

3

ditional) equations that are implicitly oriented from left to right as rewrite rules (and opera-

tionally used as simplification rules), and B is a set of algebraic axioms (which are implicitly

expressed in Maude as attributes of their corresponding operator using the assoc and comm

keywords) that are only used for B-matching.

We formalize the notion of decomposition of an equational theory (Σ ,E0 ⊎B) into a (well-

behaved) rewrite theory (Σ ,B,
−→
E0) that satisfies all of the conditions we need, where equations

in E0 are explicitly oriented from left to right as
−→
E0 = {t → t ′ | t = t ′ ∈ E0}. In a decomposition,

the oriented equations in
−→
E0 are used as simplification rules, and the algebraic axioms of B are

used for B-matching (and are never used for rewriting).

Definition 1 (Decomposition [4]). Let (Σ ,E) be an order-sorted equational theory. We call

(Σ ,B,
−→
E0) a decomposition of (Σ ,E) if E = E0 ⊎B and (Σ ,B,

−→
E0) is an order-sorted rewrite

theory satisfying the following properties:

1. B is regular, i.e., for each t = t ′ in B, we have V ar(t) = V ar(t ′), and linear, i.e., for each

t = t ′ in B, each variable occurs only once in t and in t ′.

2. B is sort-preserving, i.e., for each t = t ′ in B, sort s, and substitution σ , we have tσ ∈
TΣ (X)

s
iff t ′σ ∈ TΣ (X)

s
; furthermore, for each t = t ′ in B, all variables in V ar(t)∪

V ar(t ′) have a top4 sort.

3. B has a finitary and complete matching algorithm so that B-matching is decidable5.

4. The rewrite rules in
−→
E0 are convergent, i.e. confluent, terminating, and strictly coherent

modulo B, and sort-decreasing, i.e., for each t → t ′ in
−→
E0 and substitution σ , t ′σ ∈TΣ (X)s

implies tσ ∈ TΣ (X)s

In the following, we often abuse notation and say that (Σ ,B,E0) is a decomposition of an

order-sorted equational theory E = (Σ ,E) even if E 6= E0 ⊎B but E0 is instead the explicitly

extended B-coherent completion of a set E ′
0 such that E = E ′

0 ⊎B.

2.1 Pure homeomorphic embedding

The pure (syntactic) homeomorphic embedding relation known from term algebra [11] was

introduced by Dershowitz for variable-arity symbols in [6] and for fixed-arity symbols in [7].

In the following, we consider only fixed-arity symbols.

Definition 2 (Homeomorphic embedding, Dershowitz [7]). The homeomorphic embedding

relation ◭_ over TΣ is defined as follows:

∃i∈{1,...,n} : s ◭_ ti
s ◭_ f (t1,...,tn)

∀i∈{1,...,n} : si
◭_ ti

f (s1,...,sn) ◭_ f (t1,...,tn)

with n ≥ 0.

4 The poset (S,≤) of sorts for Σ is partitioned into equivalence classes (called connected components)

by the equivalence relation (≤ ∪ ≥)+. We assume that each connected component [s] has a top sort

element under ≤, denoted ⊤[s]. This involves no real loss of generality, since if [s] lacks a top sort, it

can easily be added.
5 The definition in [9] requires that B-unification is decidable.

4

Roughly speaking, the left inference rule deletes subterms, while the right inference rule

deletes context. We write s ◭_ t if s is derivable from t using the above rules. When s ◭_ t, we say

that s is (syntactically) embedded in t (or t syntactically embeds s). Note that ≡⊆ ◭_, where ≡
denotes syntactic identity.

A well-quasi ordering � is a transitive and reflexive binary relation such that, for any

infinite sequence of terms t1, t2, . . . with a finite number of operators, there exist j,k with j < k

and t j � tk.

Theorem 1 (Tree Theorem, Kruskal [11]). The embedding relation ◭_ is a well-quasi-ordering

on TΣ .

The derivability relation given by ◭_ is mechanized in [16] by introducing the following

term rewriting system Emb(Σ) as follows: t ◭_ t ′ if and only if t ′ →∗
Emb(Σ) t.

Definition 3 (Homeomorphic embedding rewrite rules, Middeldorp [16]). Let Σ be a sig-

nature. The homeomorphic embedding can be decided by the TRS Emb(Σ) that consists of all

rewrite rules

f (X1, · · · ,Xn)→ Xi

where f ∈ Σ is a function symbol of arity n ≥ 1 and i ∈ {1, · · · ,n}.

Definition 2 can be applied to terms of TΣ (X) by simply regarding the variables in terms

as constants. However, this definition cannot be used when existentially quantified variables are

considered. The following definition from [12, 17] adapts the pure (syntactic) homeomorphic

embedding from [6] by adding a simple treatment of logical variables where all variables are

treated as if they were identical, which is enough for many symbolic methods such as the partial

evaluation of [2]. Some extensions of E dealing with varyadic symbols and infinite signatures

are investigated in [13].

Definition 4 (Variable-extended homeomorphic embedding, Leuschel [12]). The extended

homeomorphic embedding relation E over TΣ (X) is defined in Figure 1, where the Variable

inference rule allows dealing with free (unsorted) variables in terms, while the Diving and

Coupling inference rules are equal to the pure (syntactic) homeomorphic embedding definition.

Variable Diving Coupling

xEy
∃i∈{1,...,n} : sEti

sE f (t1,...,tn)
∀i∈{1,...,n} : siEti

f (s1,...,sn)E f (t1,...,tn)

Fig. 1. Variable-extended homeomorphic embedding

The extended embedding relation E is a well-quasi-ordering on the set of terms TΣ (X)
[12, 17]. An alternative characterization without the hassle of explicitly handling variables can

be proved as follows.

Lemma 1 (Variable-less characterization of E). Given a signature Σ , let Σ ♯ be an extension

of Σ with a new constant ♯, and let t♯ denote the (ground) instance of t where all variables have

been replaced by ♯. Given two terms t1 and t2, t1 E t2 iff t
♯
1 E t

♯
2 iff t

♯
1
◭_ t

♯
2.

5

Moreover, Lemma 1 above allows the variable-extended relation E of Definition 4 to be

mechanized in a way similar to the rewriting relation →∗
Emb(Σ) used in Definition 3 for the em-

bedding ◭_ of Definition 2: t1 E t2 if and only if t
♯
2 →

∗
Emb(Σ ♯)

t
♯
1. By abuse of notation, from now

on, we will indistinctly consider either terms with variables or ground terms with ♯, whenever

one formulation is simpler than the other.

3 Homeomorphic embedding modulo equational axioms

The following definition given in [2] extends the “syntactically simpler” homeomorphic em-

bedding relation on nonground terms to the order-sorted case modulo a set of axioms B. The

(order-sorted) relation EB is called B–embedding (or embedding modulo B). We define v
ren
=Bv′

iff there is a renaming substitution σ for v′ such that v =B v′σ .

Definition 5 ((Order-sorted) homeomorphic embedding modulo B). We define the

B–embedding relation EB (or embedding modulo B) as (
ren
=B).(E).(

ren
=B).

Example 1. Consider the following rewrite theory (written in Maude syntax) that defines the

signature of natural numbers, with sort Nat and constructor operators 0, and suc for sort Nat.

We also define the associative and commutative addition operator symbol _+_.

fmod NAT is

sort Nat .

op 0 : -> Nat .

op suc : Nat -> Nat .

op _+_ : Nat Nat -> Nat [assoc comm] .

endfm

Then, we have +(1,X :Nat) EB +(Y :Nat,+(1,3)) because +(Y :Nat,+(1,3)) is equal to

+(1,+(Y :Nat,3)) modulo associativity and commutativity, and+(1,X :Nat)E+(1,+(Y :Nat,3)).

The following result extends Kruskal’s Tree Theorem for the equational theories consid-

ered in this paper. We have to restrict it to the class of finite equational theories in order to prove

the result. B is called class-finite if all B-equivalence classes are finite. This includes the class

of permutative equational theories. An equational theory E is permutative if for all terms t, t ′,

the fact that t =E t ′ implies that the terms t and t ′ contain the same symbols with the same

number of occurrences [10]. Permutative theories include any theory with any combination of

symbols obeying any combination of associativity and commutativity axioms.

Theorem 2. For class-finite theories, the embedding relation EB is a well-quasi ordering of

the set TΣ (X) for finite Σ , that is, EB is a quasi-order.

Function symbols with variable arity are sometimes seen as associative operators. Let us

briefly discuss the homeomorphic embedding modulo axioms EB of Definition 5 in compari-

son to the variadic extension ◭_v of Definition 2 as given in [6]:

Diving Coupling

∃i∈{1,...,n} : s ◭_v ti
s ◭_v f (t1,...,tn)

∀i∈{1,...,m} : si
◭_v t ji

,with 1≤ j1< j2<···< jm≤n

f (s1,...,sm) ◭_v f (t1,...,tn)

6

Example 2. Consider a variadic version of the addition symbol + of Example 1 that allows

any number of natural numbers to be used as arguments; for instance, +(1,2,3). On the one

hand, +(1) ◭_v +(1,2,3) whereas +(1) 6EB +(1,2,3), with B consisting of the associativity

and commutativity axioms for the operator + (actually, +(1) is ill-formed). On the other hand,

we have both +(1,2) ◭_v +(1,0,3,2) and +(1,2) EB +(1,0,3,2). This is because any well-

formed term that consists of the addition (in any order) of the constants 0, 1, 2, and 3 (for

instance, +(+(1,0),+(3,2)) can be given a flat representation +(1,0,2,3). Note that there

are many other equivalent terms, e.g., +(+(1,2),+(3,0)) or +(+(1,+(3,2)),0), all of which

are represented by the flattened term +(0,1,2,3). Actually, because of the associativity and

commutativity of symbol +, flattened terms like +(1,0,2,3) can be further simplified into

a single6 canonical representative +(0,1,2,3), hence also +(1,2) EB +(0,1,2,3). A more

detailed explanation of flat terms can be found in Section 5. However, note that +(2,1) EB

+(1,0,3,2) but +(2,1) 6◭_v +(1,0,3,2) because the ◭_v does not consider the commutativity of

symbol +.

Roughly speaking, in the worst case, the homeomorphic embedding modulo axioms of

Definition 5, t EB t ′, amounts to considering all the elements in the B-equivalence classes of t

and t ′ and then checking for standard homeomorphic embedding, u E u′, every pair u and u′ of

such terms, one term from each class. According to Definition 3, checking u E u′ essentially

boils down to the reachability analysis given by u′ →∗
Emb(Σ) u. Unfortunately, the enumeration

of all terms in a B-equivalence class is impractical, as shown in the following example.

Example 3. Consider the AC binary symbol + of Example 1 and the terms t =+(1,2) and t ′ =
+(2,+(3,1)). The AC-equivalence class of t contains two terms whereas the AC-equivalence

class of t ′ contains nine terms. This implies computing eighteen reachability problems u′ →∗
Emb(Σ)

u in order to decide t EAC t ′, in the worst case. Moreover, we know a priori that half of these

reachability tests will fail (those in which 1 and 2 occur in different order in u′ and u; for

instance u′ =+(1,+(2,3)) and u =+(2,1).

A more effective rewriting characterization of EB can be achieved by lifting Definition 3 to

the order-sorted and modulo case in a natural way. However, ill-formed terms can be produced

by naïvely applying the rules f (X1, . . . ,Xn) → Xi of Definition 3 to typed (i.e., order-sorted)

terms. For example, “(0≤ 1) or true” → “0 or true”.

In the order-sorted context we can overcome this drawback as follows. Assume that Σ has

no ad-hoc overloading. Then, we can extend Σ to a new signature ΣU by adding a new top sort

U that is bigger than all other sorts. Now, for each f : A1, . . . ,An → A in Σ , we add the rules

f (X1:U , . . . ,Xn:U) → Xi:U , 1 ≤ i ≤ n. In this way, rewriting with →∗
Emb(ΣU)/B

becomes a

relation between well-formed ΣU -terms, as first proposed in [2].

Definition 6 ((Order-sorted) homeomorphic embedding rewrite rules modulo B [2]). Let

(Σ ,B,
−→
E0) be an equational theory decomposition. Let us introduce the following signature

transformation Σ ∋ (f : s1 . . .sn → s) 7→ (f : U n... U → U) ∈ Σu, where U conceptually

represents a universal supersort of all sorts in Σ . Also, for any Σ -term t, tu leaves the term t

unchanged but regards all its variable as unsorted (i.e., of sort U). We define the TRS Emb(Σ)

that consists of all rewrite rules.

f (X1:U , . . . ,Xn:U)→ Xi:U

for each f : A1, . . . ,An → A in Σ and i ∈ {1, . . . ,n}.

6 Maude uses a term lexicographic order for the arguments of flattened terms [8].

7

In the sequel, we consider equational theories B that may contain any combination of as-

sociativity and/or commutativity axioms for any binary symbol in the signature. Also, for the

sake of simplicity we often omit sorts when no confusion can arise.

Proposition 1. Given Σ and B, for t and t ′ in TΣ (X), t EB t ′ iff (t ′u)♯ →∗
Emb((ΣU)♯)/B

(tu)♯.

Example 4. Consider the order-sorted signature for natural numbers of Example 1. Let us rep-

resent by sort U in Maude the unique (top) sort of the transformed signature:

fmod NAT-U is

sort U .

op 0 : -> U .

op suc : U -> U .

op _+_ : U U -> U [assoc comm] .

endfm

Likewise, the terms expressed in Σ must also be transformed to be expressed as ΣU -terms.

For instance, given the Σ -terms t = X:Nat7 and t ′ = suc(Y:Nat), the corresponding ΣU -

terms are t = X:U and suc(Y:U), respectively.

The associated TRS Emb(Σ) contains the following two rules for the operator +:

+(X1:U,X2:U)→ X1:U

+(X1:U,X2:U)→ X2:U

However, since the rules of Emb(Σ) are applied modulo the commutativity of symbol +,

in practice, we can get rid of either of the two rules above since only one is required in Maude.

Example 5. Following Example 3, instead of comparing pairwisely all terms in the equivalence

classes of t and t ′, we choose Emb(Σ) to contain just the rewrite rule +(X1:U,X2:U)→ X2:U ,

we use it to prove the rewrite step +(2,+(3,1)) →Emb(Σ)/B +(2,1), and finally we check

that +(2,1) =B +(1,2), with B = {A,C}. However, there are six alternative rewriting steps

stemming from the initial term +(2,+(3,1)), all of which result from applying the very same

rewrite rule above to the term (modulo AC), five of which are useless for proving the considered

embedding (the selected redex is underlined):

+(2,+(3,1))→Emb(Σ)/B +(2,1) +(2,+(3,1))→Emb(Σ)/B +(2,3) +(2,+(3,1))→Emb(Σ)/B +(3,1)

+(2,+(3,1))→Emb(Σ)/B 1 +(2,+(3,1))→Emb(Σ)/B 2 +(2,+(3,1))→Emb(Σ)/B 3

For a term with k addends, we have (2k)−2 rewriting steps. This leads to a huge combinatorial

explosion when considering the complete rewrite search tree.

Moreover, there are three problems with Definition 6. First, the intrinsic non-determinism

of the rules may unnecessarily produce an extremely large search space. Second, as shown

in Example 5, this intrinsic non-determinism in the presence of axioms is intolerable, that is,

unfeasible to handle. Third, the associated reachability problems do not scale up to complex

embedding problems so that a suitable search strategy must be introduced. We address these

problems stepwisely in the sequel.

7 The expression X :S represents an explicit definition of a variable X of sort S in Maude.

8

4 Goal-driven homeomorphic embedding modulo B

The formulation of homeomorphic embedding as a reachability problem by using the rewrite

rules of Definition 6 generates a blind search that does not take advantage of the actual terms t

and t ′ being compared for embedding. In this section, we provide a more refined formulation

of homeomorphic embedding modulo axioms that is goal driven in the sense that, given an

embedding problem (or goal), t EB t ′, it inductively processes the terms t and t ′ in a top-down

manner.

First, we introduce in the following section a calculus that extends the homeomorphic

embedding relation of Definition 4 to the order-sorted equational case.

4.1 An homeomorphic embedding calculus modulo B

Let us introduce a calculus for embeddability goals t E
gd
B t ′ that directly handles in the deduc-

tion system the algebraic axioms of B, with B being any combination of A and/or C axioms for

the theory operators. Roughly speaking, this is achieved by specializing w.r.t. B the coupling

rule of Definition 4.

Definition 7 (Goal-driven homeomorphic embedding modulo B). The homeomorphic em-

bedding relation modulo B is defined as the smallest relation that satisfies the inference rules

of Definition 4 together with the new inference rules given in Figure 2. That is:

1. the three inference rules (Variable, Diving, and Coupling) of Definition 4 for any function

symbol;

2. one extra coupling rule for the case of a commutative symbol with or without associativity

(CouplingC);

3. two extra coupling rules for the case of an associative symbol with or without commuta-

tivity (CouplingA); and

4. two extra coupling rules for the case of an associative-commutative symbol (CouplingAC).

CouplingC

s0 E
gd
B t1 ∧ s1 E

gd
B t0

f (s0,s1)E
gd
B f (t0, t1)

CouplingA

f (s0,s1)E
gd
B t0 ∧ s2 E

gd
B t1

f (s0, f (s1,s2))E
gd
B f (t0, t1)

s0 E
gd
B f (t0, t1) ∧ s1 E

gd
B t2

f (s0,s1)E
gd
B f (t0, f (t1, t2))

CouplingAC

f (s0,s1)E
gd
B t1 ∧ s2 E

gd
B t0

f (s0, f (s1,s2))E
gd
B f (t0, t1)

s1 E
gd
B f (t0, t1) ∧ s0 E

gd
B t2

f (s0,s1)E
gd
B f (t0, f (t1, t2))

Fig. 2. Extra coupling rules for A, C, AC symbols

Proposition 2. Given Σ and B, for terms t and t ′ in TΣ (X), t EB t ′ iff t E
gd
B t ′ .

9

Example 6. Consider the binary symbol + obeying associativity and commutativity axioms,

and the terms t =+(1,2) and t ′ =+(2,+(3,1)) of Example 5. We can prove t E
gd
B t ′ by

1E
gd
B 1

1E
gd
B +(3,1)

2 E
gd
B 2

+(1,2)Egd
B +(2,+(3,1))

We can also prove a more complex embedding goal by first using the right inference rule

for AC of Figure 2 and then the generic Coupling and Diving inference rules.

2E
gd
B

2

2E
gd
B

+(4,2)
3E

gd
B 3

+(2,3)E
gd
B +(+(4,2),3)

1 E
gd
B 1

+(1,+(2,3))Egd
B +(+(4,2),+(3,1))

It is immediate to see that, when the size of the involved terms t and t ′ grows, the improvement

in performance of E
gd
B w.r.t. EB can be significant (just compare these two embedding proofs

with the corresponding search trees for EB).

4.2 Reachability-based, goal-driven homeomorphic embedding formulation

Let us provide a more operational goal-driven characterization of the homeomorphic embed-

ding modulo B. We formalize it in the reachability style of Definition 6. The main challenge

here is how to generate a suitable rewrite theory Rrogd(Σ ,B) that can decide embedding modulo

B by running a reachability goal.

Definition 8 (Goal-driven homeomorphic embedding rewrite rules modulo B). Given Σ

and B, we define the TRS Rrogd(Σ ,B) as follows.

1. We include in Rrogd(Σ ,B) a rewrite rule of the form u E
rogd
B v → true for each (particular

intance of the) inference rules of the form
uE

gd
B v

given Definition 7 (e.g., the Variable

Inference Rule from Definition 4 or the Coupling Inference Rule from Definition 4, for the

case of a constant symbol c).

2. We include in Rrogd(Σ ,B) a rewrite rule of the form uE
rogd
B v→ u1 E

rogd
B v1∧·· ·∧uk E

rogd
B

vk for each (particular intance of the) inference rules of the form
u1E

gd
B v1∧···∧ukE

gd
B vk

uE
gd
B v

given

in Definition 7.

Proposition 3. Given Σ and B, for terms t and t ′ in TΣ (X), t E
gd
B t ′ iff (t Erogd

B t ′)→∗
Rrogd(Σ ,B)/B

true.

Example 7. Consider the binary symbol + of Example 1. According to Definition 7, there are

twelve inference rules for E
gd
B :

Variable Diving Coupling

xE
gd
B y

xE
gd
B t1

xE
gd
B suc(t1)

0E
gd
B 0

xE
gd
B t1

xE
gd
B +(t1,t2)

t1E
gd
B t ′1

suc(t1)E
gd
B suc(t ′1)

xE
gd
B t2

xE
gd
B +(t1,t2)

t1E
gd
B t ′1 ∧ t2E

gd
B t ′2

+(t1,t2)E
gd
B +(t ′1,t

′
2)

10

CouplingC CouplingA
CouplingAC

t1E
gd
B t ′2 ∧ t2E

gd
B t ′1

+(t1,t2)E
gd
B +(t ′1,t

′
2)

+(t0,t1)E
gd
B t ′1 ∧ t2E

gd
B t ′2

+(t0,+(t1,t2))E
gd
B +(t ′1,t

′
2)

+(t0,t1)E
gd
B t ′2 ∧ t2E

gd
B t ′1

+(t0,+(t1,t2))E
gd
B +(t ′1,t

′
2)

t1E
gd
B +(t ′0,t

′
1) ∧ t2E

gd
B t ′2

+(t1,t2)E
gd
B +(t ′0,+(t ′1,t

′
2))

t2E
gd
B +(t ′0,t

′
1) ∧ t1E

gd
B t ′2

+(t1,t2)E
gd
B +(t ′0,+(t ′1,t

′
2))

However, the corresponding TRS Rrogd(Σ ,B) only contains six rewrite rules because, due

to pattern matching modulo associativity and commutativity in rewriting logic, the other rules

are redundant:

(Diving) x E
rogd
B suc(T1) → x E

rogd
B T1

x E
rogd
B +(T1,T2) → x E

rogd
B T1

(Coupling) ♯ Erogd
B ♯ → true

0 E
rogd
B 0 → true

suc(T1) E
rogd
B suc(T ′

1) → T1 E
rogd
B T ′

1

(Coupling /0,C,A,AC) +(T1,T2) E
rogd
B +(T ′

1 ,T
′

2) → T1 E
rogd
B T ′

1 ∧ T2 E
rogd
B T ′

2

For example, the rewrite sequence proving +(1,+(2,3))Erogd
B +(+(4,2),+(3,1)) is:

+(1,+(2,3))Erogd
B +(+(4,2),+(3,1))→Rrogd(Σ ,B)/B +(2,3))Erogd

B +(+(4,2),3)∧1 E
rogd
B 1

→Rrogd(Σ ,B)/B 2 E
rogd
B +(4,2)∧3 E

rogd
B 3

→Rrogd(Σ ,B)/B 2 E
rogd
B 2

→Rrogd(Σ ,B)/B true

Although the improvement in performance achieved by using the rewriting relation→Rrogd(Σ ,B)/B

versus the rewriting relation →∗
Emb(Σ)/B

is important, the search space is still huge since the

expression +(1,+(2,3)) Egd
B +(+(4,2),+(3,1)) matches the left-hand side +(T1,T2) E

gd
B

+(T ′
1 ,T

′
2) in many different ways (e.g., {T1 7→ 1,T2 7→+(2,3), . . .}, {T1 7→ 2,T2 7→+(1,3), . . .},

{T1 7→ 3,T2 7→+(1,2), . . .}).

In the following section, we further optimize the calculus of homeomorphic embedding

modulo axioms by considering equational (deterministic) normalization (thus avoiding search)

and by exploiting the meta-level features of Maude (thus avoiding any theory generation).

5 Meta-Level deterministic goal-driven homeomorphic embedding

modulo B

The meta-level representation of terms in Maude [5, Chapter 14] works with flattened ver-

sions of the terms that are rooted by poly-variadic versions of the associative (or associative-

commutative) symbols. For instance, given an associative (or associative-commutative) symbol

f with n arguments and n ≥ 2, flattened terms rooted by f are canonical forms w.r.t. the set of

rules given by the following rule schema

f (x1, . . . , f (t1, . . . , tn), . . . ,xm)→ f (x1, . . . , t1, . . . , tn, . . . ,xm) n,m ≥ 2

Given an associative (or associative-commutative) symbol f and a term f (t1, . . . , tn), we call

f -alien terms (or simply alien terms) those terms among the t1, . . . , tn that are not rooted by f .

In the following, we implicitly consider that all terms are in B-canonical form.

11

In the sequel, a variable x of sort s is meta-represented as x̄ = ’x:s and a non-variable term

t = f (t1, . . . , tn), with n ≥ 0, is meta-represented as t̄ = ’f [t̄1, . . . , t̄n].

Definition 9 (Meta-level homeomorphic embedding modulo B). The meta-level homeomor-

phic embedding modulo B, Eml
B , is defined for term meta-representations by means of the equa-

tional theory Eml given in Figure 3, where the auxiliary meta-level functions any and all im-

plement the existential and universal tests in the Diving and Coupling inference rules of Figure

1, and we introduce two new meta-level functions all_A and all_AC that implement existential

tests that are specific to A and AC symbols. For the sake of readability, these new existential

tests are also formulated (for ordinary terms instead of meta-level terms) as the inference rules

CouplingA and CouplingAC of Figure 4.

♯ Eml
B ♯ = true

F [TermList] Eml
B ♯ = false

T Eml
B F [TermList] = any(T,TermList) if root(T) 6= F

F [TermList1] Eml
B F [TermList2] = any(F [TermList1],TermList2)

or all(TermList1,TermList2)
F [U,V] Eml

B F [X ,Y] = any(F [U,V], [X ,Y]) if F is C

or(U Eml
B X and V Eml

B Y)
or (U Eml

B Y and V Eml
B X)

F [TermList1] Eml
B F [TermList2] = any(F [TermList1],TermList2) if F is A

or all_A(TermList1,TermList2)
F [TermList1] Eml

B F [TermList2] = any(F [TermList1],TermList2) if F is AC
or all_AC(TermList1,TermList2)

any(U,nil) = false

any(U,V : L) =U Eml
B V or any(U,L)

all(nil,nil) = true
all(nil,U : L) = false
all(U : L,nil) = false

all(U : L1,V : L2) =U Eml
B V and all(L1,L2)

all_A(nil,L) = true
all_A(U : L,nil) = false

all_A(U : L1,V : L2) = (U Eml
B V and all_A(L1,L2)) or all_A(U : L1,L2))

all_AC(nil,L) = true
all_AC(U : L1,L2) = all_AC_Aux(U : L1,L2,L2)

all_AC_Aux(U : L1,nil,L3) = false

all_AC_Aux(U : L1,V : L2,L3) = (U Eml
B V and all_AC(L1,remove(V,L3)))

or all_AC_Aux(U : L1,L2,L3))

remove(U,nil) = nil
remove(U,V : L) = if U =V then L else V : remove(U,L)

Fig. 3. Meta-level homeomorphic embedding modulo axioms

Example 8. Given the embedding problem for terms +(1,+(2,3)) and +(+(4,2),+(3,1)),
the corresponding call to the meta-level homeomorphic embedding Eml

B of Definition 9 is

’+[’1,’2,’3]Eml
B ’+[’4,’2,’3,’1].

12

CouplingA

∃ j ∈ {1, . . . ,m−n+1} : s1 E
ml
B t j ∧ f (s2, . . . ,sn)E

ml
B f

(

t j+1, . . . , tm
)

∧∀k < j : s1 6E
ml
B tk

f (s1, . . . ,sn)Eml
B f (t1, . . . , tm)

CouplingAC

∃ j ∈ {1, . . . ,m} : s1 E
ml
B t j ∧ f (s2, . . . ,sn)E

ml
B f

(

t1, . . . , t j−1, t j+1, . . . , tm
)

f (s1, . . . ,sn)Eml
B f (t1, . . . , tm)

Fig. 4. Coupling rule for associativity-commutativity functions

Proposition 4. Given Σ and B, for terms t and t ′ in TΣ (X), t E
gd
B t ′ iff (t Eml

B t ′)!Eml/B = true.

Finally, a further optimized version of Definition 9 can be easily defined by replacing the

Boolean conjunction (and) and disjunction (or) operators with the computationally more ef-

ficient Maude Boolean operators and-then and or-else that avoid evaluating the second

argument when the result of evaluating the first one suffices to compute the result.

Definition 10 (Strategic meta-level deterministic embedding modulo B). We define Esml
B

as the strategic version of relation Eml
B that is obtained by replacing the Boolean operators

and and or with Maude’s and-then operator for short-circuit version of conjunction and the

or-else operator for short-circuit disjunction [5, Chapter 9.1], respectively.

6 Experiments

We have implemented in Maude all four equational homeomorphic embedding formulations

EB, E
rogd
B , Eml

B , and Esml
B of previous sections. The implementation consists of approximately

250 function definitions (2.2K lines of Maude source code) and is publicly available online at

http://safe-tools.dsic.upv.es/victoria/jsp-pages/embedding.jsp. In this sec-

tion, we provide an experimental comparison of the four equational homeomorphic embedding

implementations by running a significant number of equational embedding goals. In order to

compare the performance of the different implementations in the worst possible scenario, all

benchmarked goals return false, which ensures that the whole search space for each goal has

been completely explored, while the execution times for succeeding goals whimsically depend

on the particular node of the search tree where success is found.

We tested our implementations on a 3.3GHz Intel Xeon E5-1660 with 64 GB of RAM run-

ning Maude v2.7.1, and we considered the average of ten executions for each test. We have cho-

sen four representative programs: (i) KMP, the classical KMP string pattern matcher [3]; (ii)

NatList, a Maude implementation of lists of natural numbers; (iii) Maze, a non-deterministic

Maude specification that defines a maze game in which multiple players must reach a given

exit point by walking or jumping, where colliding players are eliminated from the game [1];

and (iv) Dekker, a Maude specification that models a faulty version of Dekker’s protocol, one

of the earliest solutions to the mutual exclusion problem that appeared in [5]. As testing bench-

marks we considered a set of representative embeddability problems for the four programs that

are generated during the execution of the partial evaluator Victoria [2].

Tables 1, 2, and 3 below analyze different aspects of the implementation. In Table 1, we

compare the size of the generated rewrite theories for the naïve and the goal-driven definitions

versus the meta-level definitions. For both, Eml
B and Esml

B , there are the same number (21) of

generated equations (♯E), whereas the number of generated rules (♯R) is zero because both

definitions are purely equational (deterministic) and just differ in the version of the boolean

13

operators being used. As for the generated rewrite theories for computing EB and E
rogd
B , they

contain no equations, while the number of generated rules increases with the complexity of

the program (that heavily depends on the equational axioms that the function symbols obey).

The number of generated rules is much bigger for E
rogd
B than for EB (for instance, E

rogd
B is

encoded by 823 rules for the Dekker program versus the 59 rules of EB). Columns /0, A,C, and

AC summarize the number of free, associative, commutative, and associative-commutative

symbols, respectively, for each benchmark program. The generation times (GT) are negligible

for all rewrite theories.

Benchmark
♯ Axioms EB E

rogd
B Eml

B , Esml
B

/0 A C AC ♯E ♯R GT(ms) ♯E ♯R GT(ms) ♯E ♯R GT(ms)

Kmp 9 0 0 0 0 15 1 0 57 2 21 0 0

NatList 5 1 1 2 0 10 1 0 26 1 21 0 0

Maze 5 1 0 1 0 36 7 0 787 15 21 0 0

Dekker 16 1 0 2 0 59 8 0 823 18 21 0 0

Table 1. Size of generated theories for naïve and goal-driven definitions vs. meta-level definitions

For all benchmarks T1 Eα
B T2 in Table 2, we have fixed to five the size of T1 that is

measured in the depth of (the non-flattened version of) the term. As for T2, we have considered

terms with increasing depths: five, ten, one hundred, and five hundred. The ♯ Symbols column

records the number of A (resp. AC) symbols occurring in the benchmarked goals.

Benchmark
♯ Symbols Size EB E

rogd
B Eml

B Esml
B

A AC T1 T2 Time(ms) Time(ms) Time(ms) Time(ms)

Kmp 0 0 5

5 10 6 1 1

10 150 125 4 1

100 TO TO 280 95

500 TO TO 714 460

NatList 1 2 5

5 2508 2892 1 1

10 840310 640540 1 1

100 TO TO 8 2

500 TO TO 60 5

Maze 1 1 5

5 40 25 1 1

10 TO 20790 4 1

100 TO TO 256 2

500 TO TO 19808 10

Dekker 1 1 5

5 50 40 1 1

10 111468 110517 2 1

100 TO TO 5 3

500 TO TO 20 13

Table 2. Performance of equational homeomorphic embedding implementations w.r.t. problem size

The figures in Table 2 confirm our expectations regarding EB and E
rogd
B that the search

space is huge and increases exponentially with the size of T2 (discussed for EB in Example 5

14

and for E
rogd
B in Example 6). Actually, when the size of T2 is 100 (and beyond) a given timeout

(represented by TO in the tables) is reached that is set for 3.6e+6 milliseconds (1 h). The reader

can also check that the more A,C, and AC symbols occur in the original program signature,

the bigger the execution times. An odd exception is the Maze example, where the timeout is

already reached for the size 10 of T2 even if the number of equational axioms is comparable

to the other programs. This is because the AC-normalized, flattened version of the terms is

much smaller than the original term size for the NatList and Dekker benchmarks but not for

Maze, where the flattened and original terms have similar size. On the other hand, our ex-

periments demonstrate that both Eml
B and Esml

B bring impressive speedups, with Esml
B working

outstandingly well in practice even for really complex terms.

T1 T2 EB E
rogd
B Eml

B Esml
B

Size ♯ Symbols Size ♯ Symbols
Time(ms) Time(ms) Time(ms) Time(ms)

OT FT /0 C A AC OT FT /0 C A AC

5 5 5 0 0 0 100 100 100 0 0 0 165 70 1 1

5 5 3 2 0 0 100 100 50 50 0 0 TO 38 60 35

5 2 4 0 1 0 100 2 50 0 50 0 TO TO 108035 3

5 2 4 0 0 1 100 2 50 0 0 50 TO TO 42800 4

5 3 8 0 1 2 100 3 50 0 25 25 TO TO 22796 5

5 5 5 0 0 0 500 500 500 0 0 0 48339 34000 12 4

5 5 3 2 0 0 500 500 250 250 0 0 TO 2183 6350 2005

5 2 4 0 1 0 500 2 250 0 250 0 TO TO TO 30

5 2 4 0 0 1 500 2 250 0 0 250 TO TO TO 27

5 3 8 0 1 2 500 3 250 0 125 125 TO TO TO 50

Table 3. Performance of equational homeomorphic embedding implementations w.r.t. axiom entangle-

ment for the NatList example

The reader may wonder how big the impact is having A, C, or AC operators. In order

to compare the relevance of these symbols, in Table 3 we fix one single benchmark program

(NatList) that contains all three kinds of operators: two associative operators (list concatenation

; and natural division /), a commutative (natural pairing) operator (||), and two associative-

commutative arithmetic operators (+,∗). With regard to the size of the considered terms, we

confront the size of the original term (OT) versus the size of its flattened version (FT); e.g.,

500 versus 2 for the size of T2 in the last row.

We have included the execution times of EB and E
rogd
B for completeness, but they do not

reveal a dramatic improvement of E
rogd
B with respect to EB for the benchmarked (false) goals,

contrary to what we initially expected. This means that E
rogd
B cannot be generally used in

real applications due to the risk of intolerable embedding test times, even if E
rogd
B may be far

less wasteful than EB for succeeding goals, as discussed in Section 4. For Eml
B and Esml

B , the

figures show that the more A and AC operators comparatively occur in the problem, the bigger

the improvement achieved. This is due to the following: (i) these two embedding definitions

manipulate flattened meta-level terms; (ii) they are equationally defined, which has a much

better performance in Maude than doing search; and (iii) our definitions are highly optimized

for lists (that obey associativity) and sets (that obey both associativity and commutativity).

Homeomorphic embedding has been extensively used in Prolog for different purposes, such

as termination analysis and partial deduction.

15

102 103 104

101

102

103

104

105

302
432

1057

27938

92022

15 35
65

95

150

Term size

T
im

e
(m

s)

Prolog E

Maude Esml
/0

Fig. 5. Comparison of E in Prolog vs. Esml
/0 for

the NatList example (no axioms in goals)

In Figure 5 we have compared on a loga-

rithmic scale our best embedding definition,

Esml
B , with a standard meta-level Prolog8 im-

plementation of the (syntactic) pure homeo-

morphic embedding E of Definition 4.

We chose the NatList example and terms

T1 and T2 that do not contain symbols obey-

ing equational axioms as this is the only case

that can be handled by the syntatic Prolog

implementation. Our experiments show that

our refined deterministic formulation Esml
B

(i.e. without search) outperforms the Pro-

log version so no penalty is incurred when

syntactic embeddability tests are run in our

equational implementation.

7 Concluding remarks

Homeomorphic embedding has been extensively used in Prolog but it has never been investi-

gated in the context of expressive rule-based languages like Maude, CafeOBJ, OBJ, ASF+SDF,

and ELAN that support symbolic reasoning methods modulo equational axioms. We have in-

troduced a new equational definition of homeomorphic embedding with a remarkably good

performance for theories with symbols having any combination of associativity and commu-

tativity. We have also compared different definitions of embedding identifying some key con-

clusions: (i) definitions of equational homeomorphic embedding based on (non-deterministic)

search in Maude perform dramatically worse than their equational counterparts and are not fea-

sible in practice, (ii) definitions of equational homeomorphic embedding based on generated

theories perform dramatically worse than meta-level definitions; and (iii) the flattened meta-

representation of terms is crucial for homeomorphic embedding definitions dealing with A and

AC operators to pay off in practice. As future work, we plan to extend our results to the case

when the equational theory B may contain the identity axiom, which is non-trivial since B is

not class-finite.

References

1. M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Exploring Conditional Rewriting Logic Compu-

tations. Journal of Symbolic Compututation, 69:3–39, 2015.

2. M. Alpuente, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Partial Evaluation of Order-Sorted

Equational Programs Modulo Axioms. In Proc. of 26th Int’l Symposium on Logic-Based Program

Synthesis and Transformation, LOPSTR 2016, volume 10184 of LNCS, pages 3–20. Springer, 2017.

3. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Programs. ACM

TOPLAS, 20(4):768–844, 1998.

4. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and Proof in Membership Equational

Logic. Theor. Comput. Sci., 236(1-2):35–132, 2000.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott. All About

Maude: A High-Performance Logical Framework, volume 4350 of LNCS. Springer-Verlag, 2007.

8 To avoid any bias, we took the Prolog code for the homeomorphic embedding of the ECCE system

[14] that is available at https://github.com/leuschel/ecce, and we run it in SWI-Prolog 7.6.3.

16

6. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume B: Formal Models and Semantics, pages 243–320. Elsevier,

Amsterdam, 1990.

7. Dershowitz, N. A Note on Simplification Orderings. Information Processing Letters, 9(5):212–215,

1979.

8. S. Eker. Single Elementary Associative-Commutative Matching. J. Autom. Reasoning, 28(1):35–51,

2002.

9. S. Escobar, J. Meseguer, and R. Sasse. Variant Narrowing and Equational Unification. Electronic

Notes Theoretical Computer Science, 238(3):103–119, 2009.

10. H.J. Bürckert and A. Herold and M. Schmidt-Schau. On Equational Theories, Unification, and

(Un)decidability. Journal of Symbolic Computation, 8(1–2):3–49, 1989.

11. J.B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the

American Mathematical Society, 95:210–225, 1960.

12. M. Leuschel. On the Power of Homeomorphic Embedding for Online Termination. In G. Levi,

editor, Proc. of 5th International Symposium on Static Analysis, SAS’98, volume 1503 of LNCS,

pages 230–245. Springer, 1998.

13. M. Leuschel. Homeomorphic Embedding for Online Termination of Symbolic Methods. In T. Æ.

Mogensen, D. A. Schmidt, and I. Hal Sudborough, editors, The Essence of Computation, Complexity,

Analysis, Transformation. Essays Dedicated to Neil D. Jones on occasion of his 60th birthday),

volume 2566 of LNCS, pages 379–403. Springer, 2002.

14. M. Leuschel, B. Martens, and D. De Schreye. Controlling Generalization and Polyvariance in Partial

Deduction of Normal Logic Programs. ACM TOPLAS, 20(1):208–258, 1998.

15. J. Meseguer. Strict Coherence of Conditional Rewriting Modulo Axioms. Theor. Comput. Sci.,

672:1–35, 2017.

16. A. Middeldorp and B. Gramlich. Simple Termination is Difficult. Applicable Algebra in Engineering,

Communication and Computing, 6(2):115–128, 1995.

17. M.H. Sørensen and R. Glück. An Algorithm of Generalization in Positive Supercompilation. In J.W.

Lloyd, editor, Proc. of International Symposium on Logic Programming, ILPS’95, pages 465–479.

MIT Press, 1995.

17

