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Abstract. We present Multiparty Classical Choreographies (MCC), a
language model where global descriptions of communicating systems
(choreographies) implement typed multiparty sessions. Typing is achieved
by generalising classical linear logic to judgements that explicitly record
parallelism by means of hypersequents. Our approach unifies different
lines of work on choreographies and processes with multiparty sessions,
as well as their connection to linear logic. Thus, results developed in one
context are carried over to the others. Key novelties of MCC include
support for server invocation in choreographies, as well as logic-driven
compilation of choreographies with replicated processes.

1 Introduction

Choreographic Programming [17] is a programming paradigm where programs,
called choreographies, define the intended communication behaviour of a sys-
tem based on message passing, using an “Alice and Bob” notation, rather than
the behaviour of each endpoint. Choreographies are useful for several reasons:
they give a succinct description, or blueprint, of the intended behaviour of a
whole system, making the implementation less error-prone. Then, correct-by-
construction distributed implementations can be synthesised automatically by
means of projection, a compilation algorithm that generates the code for each
endpoint described in the choreography [6, 8]. Reversely, it is often possible to
obtain a choreography from an endpoint implementation by means of extraction,
providing a precise blueprint of a distributed system.

Choreographic programming has a deep relationship with the proof theory
of linear logic [9]. Specifically, choreographic programs can be seen as terms de-
scribing the reduction steps of cut elimination in linear logic (choreographies as
cut reductions). The key advantage of this result is that it provides a logical
reconstruction of two useful translations, one from choreographies to processes
(projection, or synthesis) and another from processes to choreographies (extrac-
tion) – this is obtained by exploiting the correspondence between intuitionistic
linear logic and a variant of the π-calculus [4]. These translations can be used
to keep process implementations aligned with the desired communication flows
given as choreographies, whenever code changes are applied to any of the two.
This kind of alignment is a desirable property in practice, e.g., it is the basis of
the Testable Architecture development lifecycle for web services [14].

Unfortunately, the logical reconstruction of choreographies in [9] covers only
the multiplicative-additive fragment of intuitionistic linear logic, limiting its
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practical applicability to simple scenarios. The aim of this paper is to push
the boundaries of this approach towards more realistic scenarios with sophis-
ticated features. In this article, we define a model, strictly related to classical
linear logic, that allows for replicated services, and multiparty sessions.

Reaching our aim is challenging for both design and technical reasons. In the
multiplicative-additive fragment of linear logic considered in [9], all reductions
intuitively match choreographic terms explored in previous works on choreogra-
phies, i.e., communication of a channel and branch selection [8]. This is not
the case for the exponential fragment, which yields reductions never considered
before in choreographies, e.g., explicit garbage collection of services and server
cloning (see kill and clone operations). To bridge this gap, we exploit the fact
that these operations occur naturally in the process language and, through the
logic, can be reflected to choreographic primitives for management of services as
explicit resources that can be duplicated, used, or destroyed. We show that the
reductions for these terms correspond to the principal cut reductions for expo-
nentials in classical linear logic. Typing guarantees that resource management is
safe, e.g., no destroyed resource is ever used again.

In [9], all sessions (protocols) have exactly two participants. This works well
in intuitionistic linear logic, where sequents are two-sided: two processes can be
connected if one “provides” a behaviour and the other “needs” it. This is verified
by checking identity of types, respectively between a type on the right-hand side
of the sequent of the first process and a type of the left-hand side of the sequent
for the second. To date, it is still unclear how identity for two-sided sequents
can be generalised to multiparty sessions, where a session can have multiple
participants and thus we need to check compatibility of multiple types. Instead,
this topic has been investigated in the setting of classical linear logic, where
multiparty compatibility is captured by coherence, a generalisation of duality
[10]. Therefore, our formulation of Multiparty Classical Choreographies (MCC)
is based on classical linear logic. In order to bridge choreographies to multiparty
sessions, we introduce a new session environment, which records the types of
multiparty communications performed by a choreography as global types [13].
The manipulation of the session environment reveals that typing a choreography
with multiparty sessions corresponds to building the coherence proofs for typing
its sessions. Since a proof of coherence is the type compatibility check required
by the multiparty version of cut in classical linear logic, our result generalises the
choreographies as cut reductions approach to the multiparty case as one would
expect, providing further evidence of the robustness of this idea. The final result
of our efforts is an expressive calculus for programming choreographies with
multiparty sessions and services, which supports both projection and extraction
operations for all typable programs.

2 Preview

We start by introducing MCC informally, focusing on modelling a protocol in-
spired by OpenID [20], where a client authenticates through a third-party iden-
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tity provider. MCC offers a way of specifying protocols in terms of global types.
For example, our variant of OpenID can be specified by the global type G:

u → rp(String);u → ip(String);u → ip(PWD); ip → rp.case( u → rp(String);G1, G2)

This protocol concerns three endpoints (often called roles in literature) denoted
by u (user), rp (relaying party) and ip (identity provider). The user starts by
sending its login string to both rp and ip. Then, it sends its password to ip

which will either confirm or reject u’s authentication to rp. If the authentication
is successful then the user will send an evaluation of the authentication service to
rp, and then complete as the unspecified protocol G1. Otherwise, if the password
is wrong, then the protocol continues as G2. The specification given by the global
type G can be used by a programmer during an implementation. In MCC, we
could give an implementation in terms of the choreography:

u starts rp, ip; // u starts protocol with rp and ip

u(useru) → rp(userrp); // u sends its login to rp

u(loginu) → ip(loginip); // u sends its login to ip

u(pwdu) → ip(pwdip); // u authenticates with ip

ip → rp.























inl : u′ starts s; // u′ starts protocol with s

u′(repu′) → s(reps); // u′ sends report to s

s(acks) → u′(acku′); // s acknowledges to u′

u(repu) → rp(reprp);P, // u sends report to rp

inr : Q // authentication fails























Each line is commented with an explanation of the performed action. We ob-
serve that two different protocols are started. The first line starts the OpenID
protocol between u, rp and ip described above. Moreover, after branching, the
choreography starts another session between the user (named u′) and a server s
that is used for reviewing the authentication service given by ip. In this case, the
protocol used is G′ = u′ → s(String); s → u′(String);G3, for some unspecified
G3. We leave undefined the case in which the identity provider receives a wrong
password (term Q).

In this work, we show how a choreography that follows a protocol such as G
can be expressed as a proof in a proof theory strictly related to classical linear
logic. Moreover, thanks to proof transformations, the choreography above can
be projected into a parallel composition of endpoint processes, each running
a different endpoint. As an example, the endpoint process for the user would
correspond to the process Pu, defined as

useu;u(useru);u(loginu);u(pwdu); useu
′;u′(repu′);u′(acku′);u(repu);R

which mimics the behaviour of u and u′ specified in the choreography. Operator
use is used to start a session, while the other two operators utilised above are
for in-session communication. Similarly, we can have the endpoint processes for
rp, ip and s:

Prp = srv rp; rp(userrp); rp.case(rp(reprp);R1, Q1)
Pip = srv ip; ip(loginip); ip(pwdip);R2 Ps = srv s; s(reps); s(acks);R3

3



3 GCP with Hypersequents

In this section, we present the action fragment of MCC, where we only consider
local actions, e.g., inputs or outputs. The action fragment is a variant of Globally-
governed Classical Processes (GCP) [7] whose typing rules use hypersequents.
In the remainder, we denote a vector of endpoints x1, . . . , xn as x̃ or (xi)i.

Syntax. The action fragment is a generalisation of Classical Processes [22] that
supports multiparty session types. As hinted in §2, when writing a program
in our language, we do not identify sessions via channel names, but rather we
name sessions’ endpoints. Each process owns a single endpoint of a session it
participates in. The complete syntax is given by the following grammar:

P ::= xA → y link | use x;P client

| P | Q parallel | srv y;P server

| (νx̃ : G)P restriction | kill x | P server kill

| x(x′); (P | Q) send | clone x(x′);P server clone

| y(y′);P receive

| close[x] close session

| wait[y];P receive close | y.case(P,Q) branching

| x.inl;P left selection | x.(inl : P, inr : Q) general selection

| x.inr;Q right selection | xũ.case() empty choice

With a few exceptions, the terms above are identical to those of GCP. For space
restriction reasons, we only discuss the key differences. Parallel and restriction
constructs form a single term (νx̃ : G)(P | Q) in the original GCP. The link
process xA → y is a forwarder from x to y. We further allow the general selection
x.(inl : P, inr : Q), denoting a process that non-deterministically selects a left or
a right branch. For services, an endpoint x may kill all servers by executing the
action killx | P , or duplicate them by means of clonex(x′);P – these operations
were silent in the original GCP. In cloning, the new server copies are replicated
at fresh endpoints, ready to engage in a session with new endpoint x′. More
generally, we follow the convention of [22], denoting the result of refreshing names
in Q by Q′ (changing each x ∈ fv(Q) into a fresh x′).

Types. Types, used to ensure proper behaviour of endpoints, are defined as:

A ::= A⊗ B output | AOB input G ::= x̃→ y(G);H (⊗O )

| A ⊕ B selection | A&B choice | x→ ỹ.case(G,H) (⊕& )

| !A server | ?A client | !x→ ỹ(G) (!?)

| 1 close | ⊥ wait | x̃→ y (1⊥)

| 0 false | ⊤ empty | x→ ỹ.case() (0⊤)

| X variable | X⊥ dual variable | xA → y (axiom)

In the multiparty setting, types can be split into local types A, which specify
behaviours of a single process, and global types G, which describe interaction
within sessions (and choreography actions). Again, most global types correspond
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to pairs of local types, the exception being the global axiom type, describing a
linking session (restricted by typing to type variables and their duals). Local
type operators are based on connectives from classical linear logic – thus, A⊗B

is the type of a process that outputs an endpoint of type A and continues with
type B, whereas AOB is the type of a process that receives endpoints of type A
and is itself ready to continue as B. The corresponding global type x̃→ y(G);H
types the interaction where each of the processes owning an endpoint xi sends
their new endpoint to y. Type 0 is justified by the necessity of having a type
dual to ⊤, while the rule 0⊤ is essential for the definition of coherence. Type
variables are used to represent concrete datatypes. It is worth noting that the
logic formulas in our type system enjoy the usual notion of duality, where a
formula’s dual is obtained by recursively replacing each connective by the other
one in the same row in the table above. For example, the dual of !(A ⊗ 0) is
?(A⊥O⊤), where A⊥ is the dual of formula A.

Typing. We type our terms in judgements of the form Σ 
 P ◦
◦ Ψ , where: (i)

Σ is a set of session typings of the form (xi)i :G; (ii) P is a process; and, (iii) Ψ is
a hypersequent, a set of classical linear logic sequents. Intuitively, Σ 
 P ◦

◦ Ψ

reads as “Ψ types P under the session protocols described in Σ.”

Given a judgment Σ 
 P ◦
◦ Ψ | ⊢ Γ, x : A, checking whether x is available –

not engaged in a session – is implicitly done by verifying that x does not occur
in the domain of Σ. Note that names cannot occur more than once in Σ: each
endpoint x may only belong to (at most) one session G. Hypersequents Ψ1, Ψ2

and sets of sessions Σ1, Σ2 can only be joined if their domains do not intersect.
Moreover, we use indexing in different ways:

(

Σi 
 Pi
◦
◦ Ψi

)

i
denotes several

judgements Σ1 
 P1
◦
◦ Ψ1, . . . , Σn 
 Pn

◦
◦ Ψn; indexed pairs (xi :Ai)i are

a set of pairs x1 :A1, . . . , xn :An; and, finally, (⊢ Γi)i denotes the hypersequent
⊢ Γ1 | . . . | ⊢ Γn.

In order to separate restriction and parallel (reasons for this separation will
be explained in § 4), we split the classical linear logic Cut rule into two:

(Σi 
 Pi
◦
◦ Ψi | ⊢Γi, xi :Ai)i G � (xi :Ai)i

(Σi)i, (xi)i :G 
 (Pi)i
◦
◦ (Ψi | ⊢Γi, xi :Ai)i

Conn
Σ, (xi)i :G 
 P ◦

◦ Ψ | (⊢Γi, xi :Ai)i

Σ 
 (νx̃ : G)P ◦
◦ Ψ | ⊢ (Γi)i

Scope

Rule Conn is used for merging proofs that provide coherent types (we address
coherence below), but without removing them from the environment. Since such
types need to remain in the conclusion of the rule, we need to use hypersequents.
The sequents involved in a session get merged once a Scope rule is applied. This
hypersequent presentation is similar to a classical linear logic variant of [9] with
sessions explicitly remembered in a separate context Σ.

Coherence is a generalisation of duality [7] to more than two parties: when
describing a multiparty session, simple duality of types does not suffice to talk
about their compatibility. In Fig. 1, we report the rules defining the coherence
relation �. We do not describe these here in detail, as they remain unchanged
compared to the original GCP presentation, with the exception of the axiom
rule which is only applicable to atomic types in our system.
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G � (xi :Ai)i, y :C H � Γ, (xi :Bi)i, y :D

x̃→ y(G);H � Γ, (xi :Ai ⊗ Bi)i, y :C O D
⊗O

x̃→ y � (xi :1)i, y :⊥
1⊥

G1 � Γ, x :A, (yi :Ci)i G2 � Γ, x :B, (yi :Di)i

x→ ỹ.case(G1, G2) � Γ, x :A⊕ B, (yi :Ci & Di)i
⊕&

G � x :A, (yi :Bi)i

!x→ ỹ(G) � x : ?A, (yi : !Bi)i
!?

x→ ỹ.case() � Γ , x : 0, (yi :⊤)i
0⊤

A⊤ = X or A = X⊥

xA → y � x : A, y : A⊥
Axiom

Fig. 1. Coherence rules.

A = X or A = X⊥

· 
 xA → y ◦
◦ ⊢x :A, y :A⊥

Ax
Σ1 
 P ◦

◦ Ψ1 | ⊢Γ1, x
′ :A Σ2 
 Q ◦

◦ Ψ2 | ⊢Γ2, x :B

Σ1, Σ2 
 x(x′); (P | Q) ◦
◦ Ψ1 | Ψ2 | ⊢Γ1, Γ2, x :A⊗ B

⊗

Σ 
 P ◦
◦ Ψ | ⊢Γ, y′ :A, y :B

Σ 
 y(y′);P ◦
◦ Ψ | ⊢Γ, y :A O B

O
Σ 
 P ◦

◦ Ψ | ⊢Γ

Σ 
 wait[y];P ◦
◦ Ψ | ⊢Γ, y :⊥

⊥

· 
 close[x] ◦
◦ ⊢x :1

1
(no rule for 0)

vars(Γ ) = ũ

· 
 xũ.case() ◦
◦ ⊢Γ, x :⊤

⊤

Σ 
 P ◦
◦ Ψ | ⊢Γ, x :A

Σ 
 x.inl;P ◦
◦ Ψ | ⊢Γ, x :A⊕ B

⊕1

Σ 
 Q ◦
◦ Ψ | ⊢Γ, x :B

Σ 
 x.inr;Q ◦
◦ Ψ | ⊢Γ, x :A⊕ B

⊕2

Σ 
 P ◦
◦ Ψ | ⊢Γ, x :A Σ 
 Q ◦

◦ Ψ | ⊢Γ, x :B

Σ 
 x.(inl : P, inr : Q) ◦
◦ Ψ | ⊢Γ, x :A⊕ B

⊕
· 
 P ◦

◦ ⊢?Γ , y :A

· 
 srv y;P ◦
◦ ⊢?Γ, y : !A

!

Σ 
 P ◦
◦ Ψ | ⊢Γ, y :A Σ 
 Q ◦

◦ Ψ | ⊢Γ, y :B

Σ 
 y.case(P,Q) ◦
◦ Ψ | ⊢Γ, y :A & B

&
Σ 
 P ◦

◦ Ψ | ⊢Γ, x :A

Σ 
 usex;P ◦
◦ Ψ | ⊢Γ, x :?A

?

Σ 
 P ◦
◦ Ψ | ⊢Γ

Σ 
 kill x | P ◦
◦ Ψ | ⊢Γ, x :?A

Weaken
Σ 
 P ◦

◦ Ψ | ⊢Γ, x :?A, x′ :?A

Σ 
 clone x(x′);P ◦
◦ Ψ | ⊢Γ, x :?A

Contract

Fig. 2. Rules for the action fragment.

The remaining typing rules for the action fragment, presented in Fig. 2 are
identical to those of GCP with the exception that a context in GCP may be
distributed among several sequents here. For example, rule ⊗ takes two sequents
⊢ Γ1, x

′ :A and ⊢ Γ2, x :B from two different hypersequents, and merges them
into ⊢ Γ1, Γ2, x :A⊗B, as in classical linear logic. However, elements of Γ1 and Γ2

may be connected through Σ1 and Σ2 to other parts of Ψ1 and Ψ2 respectively (as
a result of previously applied Conn). Note that the rules of this fragment work
only with processes not engaged in any session, since the endpoints explicitly
mentioned in proof terms cannot occur in the domain of Σ: this is an implicit
check in all rules of Fig. 2. Rule ⊤ introduces a single sequent Γ, x : ⊤, allowing
for any Γ . The proof term xũ.case() keeps track of the endpoints introduced in
Γ : it ensures that all endpoints in the typing are mentioned in the proof term,
which is useful when defining semantics. In this article, we restrict the axiom to
only type variables (see §6).
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(P̃ | Q) | S̃ ≡ P̃ | (Q | S̃)

(x(x′); (P | Q)) | S̃ ≡ x(x′); ((P | S̃) | Q)

(x(x′); (P | Q)) | S̃ ≡ x(x′); (P | (Q | S̃))

y(y′);P | Q̃ ≡ y(y′); (P | Q̃)

wait[y];P | Q̃ ≡ wait[y]; (P | Q̃)

x.inl;P | Q̃ ≡ x.inl; (P | Q̃)

x.inr;Q | Q̃ ≡ x.inr; (P | Q̃)

x.(inl : P, inr : Q) | S̃ ≡

x.(inl : P | S̃, inr : Q | S̃)

y.case(P,Q) | S̃ ≡ y.case(P | S̃, Q | S̃)

use x;P | Q̃ ≡ usex; (P | Q̃)

kill x | P | Q̃ ≡ kill x | (P | Q̃)

clone x(x′);P | Q̃ ≡ clone x(x′); (P | Q̃)

(νx̃ :G) (P | Q̃) ≡ (νx̃ : G)P | Q̃

(νx̃ :G) (νỹ :H)P ≡ (ν ỹ :H) (νx̃ :G)P

(νw̃ :G) (x(x′); (P | Q)) ≡

x(x′); ((νw̃ :G)P | Q)
(

∃i.wi ∈ fv(P )
)

(νw̃ :G) (x(x′); (P | Q)) ≡

x(x′); (P | (νw̃ :G)Q)
(

∃i.wi ∈ fv(Q)
)

(νw̃ :G) (y(y′);P ) ≡ y(y′); (νw̃ :G)P

(νw̃ :G) (x.inl;P ) ≡ x.inl; (νw̃ :G)P

(νw̃ :G) (x.inr;Q) ≡ x.inr; (νw̃ :G)Q

(νw̃ :G) (x.(inl : P, inr : Q)) ≡

x.(inl : (νw̃ :G)P, inr : (νw̃ :G)Q)

(νw̃ :G) (y.case(P,Q)) ≡

y.case((νw̃ :G)P, (νw̃ :G)Q)

(νw̃ :G) (usex;P ) ≡ use x; (νw̃ :G)P

(νw̃ :G) (kill x | P ) ≡ kill x | (νw̃ :G)P

(νw̃ :G) (clone x(x′);P ) ≡ clone x(x′); (νw̃ :G)P

(νx̃ :G) (srv y;P | Q̃) ≡ srv y; (νx̃ :G) (P | Q̃)

(ν z̃z :G) (xũ,z.case() | Q̃) ≡ xũ,ṽ.case() where ṽ = vars(Q̃) \ z̃

Fig. 3. Equivalences for commuting the action fragment with Conn and Scope.
All rules assume that both sides of the equation are typable in the same context.

Semantics. The semantics of the action fragment is almost identical to that
of standard GCP. It is obtained from cases of the proof of cut elimination:
the principal cases describe reductions (−→), while the permutations of rule
applications give rise to the rules for structural equivalence (≡), reported in
Fig. 3. Note that as we are interested only in commuting conversions of typable
programs, there are certain cases where the correct equivalence can be found
only by looking at the typing derivation which contains information that is not
part of the process term. Under ≡, parallel distributes safely over case (because
only the actions of one branch are going to be executed). A similar mechanism
can be found in the original presentation of Classical Processes [22], and was
later demonstrated to correspond to a bisimulation law in [1]. The semantics
of the action fragment of our calculus is presented in Fig. 4. Notice that the
β-reductions are coordinated by a global type, as they correspond to multiple
parties communicating.1 The reduction rules for server killing and cloning may
look strange because both kill and clone remain in the proof term after reduction.
This is because of the corresponding reduction in classical linear logic, where it
is necessary to use weakening and contraction (corresponding to kill and clone
respectively) also after reduction. As a consequence, we get them as proof terms.

1 It may be surprising that some of the rules also include a restriction to a vector z̃,
and a session using a vector of processes S̃, whose shape we do not inspect. This
follows from the shape of coherence rules: rules such as ⊗O , ⊕& and 0⊤ contain
an additional context Γ , captured here by z̃.
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(νx̃, y, z̃ : x̃→ y(G);H)
(

(xi(x
′
i); (Pi | Qi))i | y(y′);R | S̃

)

−→

(νx̃′, y′ : G{x̃′/x̃, y′/y})
(

P̃ | (νx̃, y, z̃ : H) (Q̃ | R | S̃)
)

(νx̃, y : x̃→ y)
(

(close[xi])i | wait[y];P
)

−→ P

(νx, ỹ, z̃ : x→ ỹ.case(G,H))
(

x.inl;P | (yi.case(Qi, Ri))i | S̃
)

−→ (νx, ỹ, z̃ : G)
(

P | Q̃ | S̃
)

(νx, ỹ, z̃ : x→ ỹ.case(G,H))
(

x.inr;P | (yi.case(Qi, Ri))i | S̃
)

−→ (νx, ỹ, z̃ : H)
(

P | R̃ | S̃
)

(νx, ỹ, z̃ : x→ ỹ.case(G,H))
(

x.(inl : P, inr : Q) | (yi.case(Ri, Si))i | T̃
)

−→ (νx, ỹ, z̃ : G)
(

P | R̃ | T̃
)

(νx, ỹ, z̃ : x→ ỹ.case(G,H))
(

x.(inl : P, inr : Q) | (yi.case(Ri, Si))i | T̃
)

−→ (νx, ỹ, z̃ : H)
(

Q | S̃ | T̃
)

(νx, ỹ : !x→ ỹ(G))
(

use x;P | (srv yi;Qi)i
)

−→ (νx, ỹ : G)
(

P | Q̃
)

(νx, ỹ : !x→ ỹ(G))
(

kill x | P | (srv yi;Qi)i
)

−→ (killuj)j | P

where ∀i.∀vi ∈ fv(Qi).vi 6= yi ⇒ ∃j.vi = uj

(νx, ỹ : !x→ ỹ(G))
(

clone x(x′);P | (srv yi;Qi)i
)

−→
(

cloneuj(u
′
j)
)

j
; (νx, ỹ : !x→ ỹ(G)) (νx′, ỹ′ : !x′ → ỹ′(G{x′/x, ỹ′/ỹ}))

(

P | (srv yi;Qi)i | (srv y′
i;Q

′
i)i

)

where ∀i.∀vi ∈ fv(Qi).vi 6= yi ⇒ ∃j.vi = uj

(νx, y : xX → y)
(

xX → w | P
)

−→ P{w/y}

(νx, y : xX⊥
→ y)

(

wX → x | P
)

−→ P{w/y}

Fig. 4. Semantics for the action fragment.

4 Extending GCP with Choreographies

In order to obtain full MCC, we extend the action fragment presented in the
previous section with choreography terms (interactions).

Syntax. Unlike a process in the action fragment, a choreography, which describes
a global view of the communications of a process, will own all of the endpoints of
the sessions it describes. We call the fragment of MCC with choreography terms
the interaction fragment. Formally, MCC syntax is extended as follows:

P ::= . . . as in the action fragment . . . | x starts ỹ;P server accept/request

| z ← yB → x;P link | x kills ỹ(Q);P server kill

| x̃(x̃′)→ y(y′);P communication | x clones ỹ(x′, ỹ′);P server clone

| x̃ closes y;P session close

| x→ ỹ.inl(P ;Q1, . . . , Qn) left selection | x→ ỹ.(inl : P, inr : Q) general selection

| x→ ỹ.inr(P1, . . . , Pn;Q) right selection

The link term z ← yB → x;P gives the choreographic view of an axiom
connected to some other process P through endpoints x and y. A linear in-
teraction x̃(x̃′) → y(y′);P denotes a communication from endpoints x̃ to the
endpoint y, where a new session with endpoints x̃′,y′ is created. The chore-
ography x̃ closes y;P closes a session between endpoints x̃, y. When it comes
to branching, we have two choreographic terms denoting left and right selec-
tion: x→ ỹ.inl(P ;Q1, . . . , Qn) and x→ ỹ.inr(P1, . . . , Pn;Q). A third term, x→
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ỹ.(inl : P, inr : Q), is used for non-deterministic choice. In MCC, we can model

non-linear behaviour: this is done with the terms x starts ỹ;P , x kills ỹ(Q);P and
x clones ỹ(x′, ỹ′);P . The first term features a client x starting a new session with
servers ỹ, while the second term is used by endpoint x to shut down servers ỹ.
Finally, we have a term for cloning servers so that they can be used by different
clients in different sessions.

Typing. Fig. 5 details the rules for typing choreography terms. Each of these
rules combines two rules from the action fragment simulating their reduction,
where the conclusion of a rule corresponds to the redex and the premise to
the reductum. Unlike process rules, the choreography rules now also look at Σ
to check that the interactions described conform to the types of the ongoing
sessions. In rule C1⊥, we close a session (removed from Σ) and terminate all
processes involved in it. Rule C⊗O types the creation of a new session with
protocol G, created among endpoints z̃ and w; this session is stored in Σ, while
the process types are updated as in rules ⊗ and O above. The remaining rules
in the linear fragment are similarly understood. Exponentials give rise to three
rules, all of them combining ! with another rule. In rule C!?, process x invokes the
services provided by ỹ, creating a new session among these processes with type
G. Rule C!w combines ! with Weaken: here the processes providing the service
are simply removed from the context. Finally, rule C!C combines ! with Contract,
allowing a service to be duplicated.

Reduction Semantics. Fig. 6 gives the reductions for the interaction fragment.
From a proof-theoretical perspective, these reductions correspond to proof trans-
formations of C rules from Fig. 5 followed by a structural Scope rule; the trans-
formation removes the C rule and pushes Scope higher up in the proof tree.

Remark 1 (Server Cloning). The reduction rule for a server cloning choreogra-
phy must clone all of the doubled endpoints. Looking at the typing rule C!C on
Figure 5, cloned variables uj are all of the endpoints mentioned in (?Γi)i, and u′j
are corresponding endpoints from (?Γ ′i )i. To make the search for these variables
syntactic, one could do an endpoint projection, as described in the next section,
and look at the appropriate subterm of the Conn rule which connects yi and x.
The uj are then the free variables of this subterm, excluding yi.

Structural equivalence. The reductions given earlier require that programs are
written in the very specific form given in their left-hand side. Formally, this is
achieved by closing −→ under structural equivalence: if P ≡ P ′, P ′ −→ Q′ and
Q′ ≡ Q, then P −→ Q. The equivalences for the interaction part are given in
Fig. 7. As in the action fragment, we are only interested in commuting conver-
sions of typable programs, and therefore rely on typing derivations for finding the
correct equivalence. Besides the commuting conversions, we also have the usual
structural equivalence rules where parallel composition under restriction, linking
process and global type for linking sessions are all symmetric. Furthermore, the
order of restrictions can be swapped.
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Linear Fragment:

Σ 
 P{w/x} ◦
◦ Ψ | ⊢Γ,w :A w 6∈ vars(Σ) A⊥ = B A = X or A = X⊥

Σ, (x, y) :xA → y 
 w ← yB → x;P ◦
◦ Ψ | ⊢Γ, x :A | ⊢w :A, y :B

CAx

Σ, (x̃, y, ũ) :H, (x̃′, y′) :G{x̃′/x̃, y′/y} 
 P ◦
◦ Ψ |

(

⊢Γi1, x
′
i :Ai

)

i
| (⊢Γi2, xi :Bi)i | ⊢Γ, y′ :C, y :D

Σ, (x̃, y, ũ) : x̃→ y(G);H 
 x̃(x̃′)→ y(y′);P ◦
◦ Ψ | (⊢Γi1, Γi2, xi :Ai ⊗ Bi)i | ⊢Γ, y :C O D

C⊗ O

Σ 
 P ◦
◦ Ψ | ⊢Γ

Σ, (x̃, y) : x̃→ y 
 x̃ closes y;P ◦
◦ Ψ | (⊢xi :1)i | ⊢Γ, y :⊥

C1⊥

Σ, (Σi)i, (x, ỹ, ũ) :G 
 P ◦
◦ Ψ | (Ψi)i | ⊢Γ, x :A | (⊢Γi, yi :Ci)i | (⊢Γj , uj :Ej)j

(

Σi 
 Qi
◦
◦ Ψi | ⊢Γi, yi :Di

)

i
H � x :B, (yi :Di)i, (uj :Ej)j

Σ, (Σi)i, (x, ỹ, ũ) :x→ ỹ.case(G,H) 
 x→ ỹ.inl(P ;Q1, . . . , Qn)
◦
◦

Ψ | (Ψi)i | ⊢Γ, x :A⊕ B |
(⊢Γi, yi :Ci & Di)i | (⊢Γj , uj :Ej)j

C1

⊕&

(

Σi 
 Pi
◦
◦ Ψi | ⊢Γi, yi :Ci

)

i
G � x :A, (yi :Ci)i, (uj :Ej)j

Σ, (Σi)i , (x, ỹ, ũ) :H 
 Q ◦
◦ Ψ | (Ψi)i | ⊢Γ, x :B | (⊢Γi, yi :Di)i | (⊢Γj , uj :Ej)j

Σ, (Σi)i , (x, ỹ, ũ) :x→ ỹ.case(G,H) 
 x→ ỹ.inr(P1, . . . , Pn;Q) ◦
◦

Ψ | (Ψi)i | ⊢Γ, x :A⊕ B |
(⊢Γi, yi :Ci & Di)i | (⊢Γj , uj :Ej)j

C2

⊕ &

Σ, (x, ỹ, ũ) :G 
 P ◦
◦ Ψ | ⊢Γ, x :A | (⊢Γi, yi :Ci)i Σ, (x, ỹ, ũ) :H 
 Q ◦

◦ Ψ | ⊢Γ, x :B | (⊢Γi, yi :Di)i

Σ, (x, ỹ, ũ) :x→ ỹ.case(G,H) 
 x→ ỹ.(inl : P, inr : Q) ◦
◦ Ψ | ⊢Γ, x :A⊕ B | (⊢Γi, yi :Ci & Di)i

C⊕&

Exponential Fragment:

Σ, (x, ỹ) :G 
 P ◦
◦ Ψ | ⊢Γ, x :A | (⊢?Γi, yi :Bi)i ∀i . vars(?Γi) ∩ vars(Σ) = ∅

Σ, (x, ỹ) : !x→ ỹ(G) 
 x starts ỹ;P ◦
◦ Ψ | ⊢Γ, x :?A | (⊢ ?Γi, yi : !Bi )i

C!?

Σ 
 P ◦
◦ Ψ | ⊢Γ

(

· 
 Qi
◦
◦ ⊢?Γi, yi :Bi

)

i
G � x :A, (yi :Bi)i

Σ, (x, ỹ) : !x→ ỹ(G) 
 x kills ỹ(Q);P ◦
◦ Ψ | ⊢Γ, x :?A | (⊢ ?Γi, yi : !Bi )i

C!w

Σ,
(x, ỹ) : !x→ ỹ(G) ,

(x′, ỹ′) : !x′ → ỹ′(G{x′/x, ỹ′/ỹ})

 P ◦

◦ Ψ |
⊢Γ, x :?A, x′ :?A
(

⊢ ?Γi, yi : !Bi | ⊢ ?Γ ′
i , y′

i : !Bi

)

i

vars(?Γi) ∩ vars(Σ) = ∅
vars(?Γ ′

i ) ∩ vars(Σ) = ∅

Σ, (x, ỹ) : !x→ ỹ(G) 
 x clones ỹ(x′, ỹ′);P ◦
◦ Ψ | ⊢Γ, x :?A | (⊢ ?Γi, yi : !Bi )i

C!C

Fig. 5. Rules for the interaction fragment.

xA → y ≡ yA⊥
→ x

(νw̃, y, x, z̃ : G) P̃ | R | Q | S̃ ≡ (νw̃, x, y, z̃ : G) P̃ | Q | R | S̃

(νz, w̃ : H) (νx, ỹ : G)P | R̃ | Q̃ ≡ (νx, ỹ : G) (νz, w̃ : H)P | Q̃ | R̃
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(νx, y : xX → y) (w ← yX⊥
→ x;P ) −→ P{w/x}

(νx, y : xX⊥
→ y) (w ← yX → x;P ) −→ P{w/x}

(νx̃, y, z̃ : x̃→ y(G);H)
(

x̃(x̃′)→ y(y′);P
)

−→ (νx̃′, y′ : G{x̃′/x̃, y′/y}) (νx̃, y, z̃ : H)P

(νx̃, y : x̃→ y) (x̃ closes y;P ) −→ P

(νx, ỹ, z̃ : x→ ỹ.case(G,H)) (x→ ỹ.inl(P ;Q1, . . . , Qn)) −→ (νx, ỹ, z̃ : G)P

(νx, ỹ, z̃ : x→ ỹ.case(G,H)) (x→ ỹ.inr(P1, . . . , Pn;Q)) −→ (νx, ỹ, z̃ : H)Q

(νx, ỹ, z̃ : x→ ỹ.case(G,H)) (x→ ỹ.(inl : P, inr : Q)) −→ (νx, ỹ, z̃ : G)P

(νx, ỹ, z̃ : x→ ỹ.case(G,H)) (x→ ỹ.(inl : P, inr : Q)) −→ (νx, ỹ, z̃ : H)Q

(νx, ỹ : !x→ ỹ(G)) (x starts ỹ;P ) −→ (νx, ỹ : G)P

(νx, ỹ : !x→ ỹ(G))
(

x kills ỹ(Q);P
)

−→ (killuj)j | P (∀vi ∈ fv(Qi).vi 6= yi ⇒ ∃j.vi = uj)

(νx, ỹ : !x→ ỹ(G))
(

x clones ỹ(x′, ỹ′);P
)

−→

(cloneuj(u
′
j))j ; (νx, ỹ : !x→ ỹ(G)) (νx′, ỹ′ : !x′ → ỹ′(G{x′/x, ỹ′/ỹ}))P (see Remark 1)

Fig. 6. Semantics for the interaction fragment.

Properties. We finish the presentation of MCC by establishing the expected
meta-theoretic properties of the system. As structural congruence is typing-
based, subject congruence is a property holding by construction:

Theorem 1 (Subject Congruence). Σ 
 P ◦
◦ Ψ and P ≡ Q implies that

Σ 
 Q ◦
◦ Ψ .

Proof. By induction on the proof that P ≡ Q. In [5], it is explained how the
rules for structural equivalence were derived, making this proof straightforward.

Moreover, our reductions preserve typing since they are proof transformations.

Theorem 2 (Subject Reduction). Σ 
 P ◦
◦ Ψ and P −→ Q implies

Σ 
 Q ◦
◦ Ψ .

Proof. By induction on the proof that P −→ Q. In [5], it is explained how the
semantics of MCC were designed in order to make this proof straightforward.

Finally, we can show that MCC is deadlock-free, since the top-level Scope appli-
cation can be pushed up the derivation. In case the top-level Scope application
is next to an application of Conn, either the choreography can reduce directly or
both rules can be pushed up. Proof-theoretically, this procedure can be viewed
as MCC’s equivalent of the Principal Lemma of Cut Elimination.

Theorem 3 (Deadlock-freedom). If P begins with a restriction and Σ 


P ◦
◦ Ψ , then there exists Q such that P −→ Q.

Proof (Sketch). Our proof idea is similar to that of Theorem 3 in [9]. We apply
induction on the size of the proof of Σ 
 P ◦

◦ Ψ . If a rule from Fig. 4 or
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w ← yB → x;P | Q̃ ≡ w ← yB → x; (P | Q̃)

x̃(x̃′)→ y(y′);P | Q̃ ≡ x̃(x̃′)→ y(y′); (P | Q̃)

x̃ closes y;P | Q̃ ≡ x̃ closes y; (P | Q̃)

x→ ỹ.inl(P ;Q1, . . . , Qn) | S̃ ≡ x→ ỹ.inl((P | S̃);Q1, . . . , Qn)

x→ ỹ.inl(P ;Q1, . . . , Qn) | S̃ ≡ x→ ỹ.inl((P | S̃); (Q1, . . . , (Qi | S̃), . . . , Qn))

x→ ỹ.inr(P1, . . . , Pn;Q) | S̃ ≡ x→ ỹ.inr(P1, . . . , Pn; (Q | S̃))

x→ ỹ.inr(P1, . . . , Pn;Q) | S̃ ≡ x→ ỹ.inr((P1, . . . , (Pi | S̃), . . . , Pn); (Q | S̃))

x starts ỹ;P | Q̃ ≡ x starts ỹ; (P | Q̃)

x kills ỹ(Q);P | S̃ ≡ x kills ỹ(Q); (P | S̃)

x clones ỹ(x′, ỹ′);P | Q̃ ≡ x clones ỹ(x′, ỹ′); (P | Q̃)

(νw̃ :G) (x̃(x̃′)→ y(y′);P ) ≡ x̃(x̃′)→ y(y′); (νw̃ :G)P

(νw̃ :G) (x̃ closes y;P ) ≡ x̃ closes y; (νw̃ :G)P

(νw̃ :G) (x→ ỹ.inl(P ;Q1, . . . , Qn)) ≡ x→ ỹ.inl((νw̃ :G)P ;Q1, . . . , Qn)

(νw̃ :G) (x→ ỹ.inl(P ;Q1, . . . , Qn)) ≡ x→ ỹ.inl((νw̃ :G)P ;Q1, . . . , (νw̃ :G)Qi, . . . , Qn)

(νw̃ :G) (x→ ỹ.inr(P1, . . . , Pn;Q)) ≡ x→ ỹ.inr(P1, . . . , Pn; (νw̃ :G)Q)

(νw̃ :G) (x→ ỹ.inr(P1, . . . , Pn;Q)) ≡ x→ ỹ.inr(P1, . . . , (νw̃ :G)Pi, . . . , Pn; (νw̃ :G)Q)

(νw̃ :G) (x.(inl : P, inr : Q)) ≡ x.(inl : (νw̃ :G)P, inr : (νw̃ :G)Q)

(νw̃ :G) (x starts ỹ;P ) ≡ x starts ỹ; (νw̃ :G)P

(νw̃ :G) (x kills ỹ(Q);P ) ≡ x kills ỹi(Qi); (νw̃ :G)P

(νw̃ :G) (x clones ỹ(x′, ỹ′);P ) ≡ x clones ỹ(x′, ỹ′); (νw̃ :G)P

(ν z̃ :G) (x clones ỹ(x′, ỹ′);P | Q̃) ≡ x clones ỹ(x′, ỹ′); (νz̃ :G) (P | Q̃)

Fig. 7. Equivalences for commuting C-rules with Conn and Scope. All rules as-
sume that both sides are typable in the same context.

Fig. 6 is applicable (corresponding to a proof where an application of Conn and
an application of Scope meet), then the thesis immediately holds.

Otherwise, we apply commuting conversions from Fig. 3 or Fig. 7, “pushing”
the top-level Scope application up in the derivation (and, if it is preceded by an
application of Conn, “pushing” also that application). This results in a smaller
proof of Σ 
 P ◦

◦ Ψ , to which the induction hypothesis can be applied.

5 Projection and Extraction

As suggested by the previous sections, interactions can be implemented in two
ways: as a single choreography term, or as multiple process terms appearing
in different behaviours composed in parallel. In this section, we formally show
that choreography interactions can be projected to process implementations, and
symmetrically, process implementations can be extracted to choreographies. We
do this by transforming proofs (derivations in the typing system), similarly to
the way we defined equivalences and reductions for MCC.
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P | xX → y ⇋ x← yX⊥

→ w;P (w, y) ∈ dom(Σ)

P | yX → x ⇋ x← yX → w;P (w, y) ∈ dom(Σ)

(

xi(x
′

i); (Pi | Qi)
)

i
| y(y′);R | S̃ ⇋ x̃(x̃′)→ y(y′);

(

P̃ | Q̃ | R | S̃
)

(close[xi])i | wait[y];P ⇋ x̃ closes y;P

x.inl;P | (yi.case(Qi, Ri))i | S̃ ⇋ x→ ỹ.inl(P | Q̃ | S̃;R1, . . . , Rn)

x.inr;P | (yi.case(Qi, Ri))i | S̃ ⇋ x→ ỹ.inr(Q1, . . . , Qn;P | R̃ | S̃)

x.(inl : P, inr : Q) | (yi.case(Ri, Si))i | T̃ ⇋ x→ ỹ.(inl : P | R̃ | T̃ , inr : Q | S̃ | T̃ )

usex;P | (srv yi;Qi)i ⇋ x starts ỹ; (P | Q̃)

kill x | P | (srv yi;Qi)i ⇋ x kills ỹ(Q);P

clone x(x′);P | (srv yi;Qi)i ⇋ x clones ỹ(x′, ỹ′);
(

P | (srv yi;Qi)i | (srv y′

i;Q
′

i)i
)

Fig. 8. Extraction (⇀) and projection (↽).

We start by defining the principal transformations for projection and extrac-
tion, a set of equivalences that require proof terms to have a special shape. We
report such transformations in Fig. 8: they perform extraction if read from left
to right, while they perform projection if read from right to left. The extraction
relation requires access to the list of open sessions Σ to ensure that we have
all the endpoints participating in the session to extract a choreography from.
The first two rules deal with axioms: the parallel composition (rule Conn) of an
axiom with a process P can be expressed by rule CAx and vice-versa. On the
third line, we show how to transform the parallel composition of an output (⊗)
and an input (O ) into a C⊗O . Similarly, x̃ closes y;P is the choreographic rep-
resentation of the term (close[xi])i | wait[y];P . Each branching operation (left,
right, non-deterministic) has a representative in both fragments with straight-
forward transformations. A server srv y;Q can either be used by a client, killed
or cloned. In the first two cases, such interactions trivially correspond to the

choreographic terms x starts ỹ; (P | Q̃) and x kills ỹ(Q);P . In the case of cloning,
we create the interaction term x clones ỹ(x′, ỹ′); (P | (srv yi;Qi)i | (srv y

′
i;Q
′
i)i),

which shows how the choreographic cloning x clones ỹ(x′, ỹ′); must be followed
by two instances of the server that is cloned. Note that these transformations
are derived by applying similar techniques as those of cut elimination. Concrete
derivations, here omitted, are straightforward: an example can be found in [5].

Remark 2. In order to project/extract an arbitrary well-typed term, given the
strict format required by the transformations in Fig. 8, we will sometimes have
to perform rewriting of terms in accordance with the commuting conversions to
reach an expected shape. In particular, we note that when projecting, we must
first project the subterms (we start from the leaves of a proof), step by step
moving down to the main term. In contrast, when extracting, we must proceed
from the root of the proof towards the leaves.

Note that our example in §2 does not provide an exact projection: in order
to improve readability, we have removed all parallels that follow output oper-
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ations, which would be introduced by the translation presented above. This is
not problematic, since the outputs in the example are just basic types.

Properties. In the sequel, we write P
x̃
−→extr P

′ whenever it is possible to apply
one of the transformations in Fig. 8 to (a term equivalent to) term P from left
to right, where x̃ are the endpoints involved in the transformation. Similarly, we

write P
x̃
−→proj P

′ whenever it is possible to apply a transformation from Fig. 8
to (a term equivalent to) term P from right to left. We also write P =⇒extr P

′

(P =⇒proj P
′) if there is a finite sequence of applications of −→extr (−→proj) and

P ′ cannot be further transformed. We then have the following results:

Theorem 4 (Type Preservation). If P
x̃
−→extr Q and Σ 
 P ◦

◦ Ψ , then

Σ 
 Q ◦
◦ Ψ , and if Q

x̃
−→proj P and Σ 
 Q ◦

◦ Ψ , then Σ 
 P ◦
◦ Ψ .

Proof. By induction on the proof that P
x̃
−→extr Q or Q

x̃
−→proj P . In [5], we

explain how the rules for projection and extraction were derived from the typing
rules to ensure that the proof of this result is straightforward.

Theorem 5 (Admissibility of Conn and C-rules). Let P be a proof term
such that 
 P ◦

◦ ⊢Γ . Then,

– there exists P ′ such that P =⇒extr P
′ and P ′ is Conn-free;

– there exists P ′ such that P =⇒proj P
′ and P ′ is free from C-rules.

Proof (Sketch). The idea is similar to the proof of Theorem 4.4.1 in [17]: by
applying commuting conversions we can always rewrite P such that one of the
rules in Fig. 8 is applicable, thus eliminating the outermost application of Conn
(in the case of extraction) or the innermost application of a C-rule (in the case
of projection). See also Remarks 2 and 3.

Remark 3. The theorem above is only applicable to judgments of the form 


P ◦
◦ ⊢Γ . This is because of the commuting conversion of the server rule

(νx̃x :G) (srv y;P | Q̃) ≡ srv y; (νx̃x :G) (P | Q̃)

where we can only permute Conn and Scope together. This conversion is needed
to rearrange certain proofs into the format required by the transformations in
Fig. 8. Note that any judgement Σ 
 P ◦

◦ Ψ can always be transformed into
this format, by repeatedly applying rule Scope to all elements in Σ.

As a consequence of the admissibility of Conn, every program can be rewritten
into a (non-unique) process containing only process terms by applying the rules
in Fig. 8 from right to left until no longer possible. Conversely, because of admis-
sibility of C-rules, every program can be rewritten into a maximal choreographic
form by applying the same rules from left to right until no longer possible.

We conclude this section with our main theorem that shows the correspon-
dence between the two fragments with respect to their semantics. In order to do
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that, we annotate our semantics with the endpoints where the reduction takes
place. This is denoted by P −→x̃ Q and P −→•x̃ Q where the first relation
is a reduction in the action fragment, while the second is a reduction in the
interaction fragment. The sequence rev(x̃) is obtained by reversing x̃.

Theorem 6 (Correspondence). Let P be a proof term such that Σ 
 P ◦
◦ Ψ .

Then,

– P −→x̃ Q implies that there exists P ′ s.t. P
x̃
−→extr P

′ and P ′ −→•x̃ Q;

– P −→•x̃ Q implies that there exists P ′ s.t. P
rev(x̃)
−→ proj P

′ and P ′ −→x̃ Q.

Proof. This proof follows the same strategy as that of Theorem 6 in [9].

6 Related Work and Discussion

Related Work. The principle of choreographies as cut reductions was introduced
in [9]. As discussed in §1, that system cannot capture services or multiparty ses-
sions. Another difference is that it is based on intuitionistic linear logic, whereas
ours on classical linear logic – in particular, on Classical Processes [22].

Switching to classical linear logic is not a mere change of appearance. It is
what allows us to reuse the logical understanding of multiparty sessions in linear
logic as coherence proofs, introduced in [10] and later extended to polymorphism
in [7]. These works did not consider choreographic programs, and thus do not
offer a global view on how different sessions are composed, as we do in this paper.

Extracting choreographies from compositions of process code is well-known
to be a hard problem. In [15], choreographies that abstract from the exchanged
values and computation are extracted from communicating finite-state machines.
The authors of [11] present an efficient algorithm for extracting concrete choreo-
graphic programs with asynchronous messaging. These works do not consider the
composition of multiple sessions, multiparty sessions, and services, as in MCC.
However, they can both deal with infinite behaviour (through loops or recur-
sion), which we do not address. An interesting direction for this feature would
be to integrate structural recursion for classical linear logic [16].

Our approach can be seen as a principled reconstruction of previous works
on choreographic programming. The first work that typed choreographies using
multiparty session types is [8]. The idea of mixing choreographies with processes
using multiparty session types is from [19]. None of these consider extraction.

Discussion. For the sake of clarity, our presentation of MCC adopts simplifica-
tions that may limit the model expressivity. Below, we discuss some key points
as well as possible extensions based on certain developments in this research line.
Non-determinism. We introduced non-determinism in a straightforward way,
i.e., our non-deterministic rules in both action and interaction fragments require
for each branch to have the same type, as done for standard session typing.
However, this solution breaks the property of confluence that we commonly
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have in logics. In order to preserve confluence, we would have to extend MCC
with the non-deterministic linear types from [3].
η-expansion. GCP in [7] allows for the axiom to be of any type A. This requires
heavily using η-expansions for transforming axioms into processes with commu-
nication actions. It is straightforward to do this in the action fragment of MCC.
However, given the way choreographies work, we can only define an axiom for
binary sessions in the interaction fragment. As a consequence, in order to apply
extraction to a process where an axiom is engaged in a multiparty session with
several endpoints, we would need to first use η-expansions to transform such
axiom into an ordinary process. In the opposite direction, we would never be
able to project a process containing an axiom from a choreography, unless it is
part of a binary session. We leave further investigation of this as future work.
Annotated Types. The original version of GCP [7] comes with an extension
called MCP, where an endpoint type A is annotated with names of endpoints
which it will be in a session with. In this way, endpoint types become more ex-
pressive, since it is possible to specify with whom each endpoint has to commu-
nicate, without having to use a global type (coherence proof) during execution.
We claim that this extension is straightforward for our presentation of MCC.
Polymorphism. As in GCP [7], we can easily add polymorphic types to MCC.
However, for simplifying the presentation of this work, we have decided to leave it
out, even though adding the GCP rules to the action fragment is straightforward.
In the case of the interaction fragment, we obtain the following rule:

X 6∈ fv(Ψ, Γ, (Γi)i)

Σ, (x, ỹ, ũ) :G{A/X} 
 P{A/X} ◦
◦ Ψ | ⊢Γ, x :B{A/X} | (⊢Γi, yi :Bi{A/X})i

Σ, (x, ỹ, ũ) :x→ ỹ.(X)G 
 x[A]→ ỹ(X);P ◦
◦ Ψ | ⊢Γ, x :∃X.B | (⊢Γi, yi :∀X.Bi)i

C∃∀

Above we have added to the syntax of global types the term x → ỹ.(X)G,
denoting a session where an endpoint x is supposed to send a type to endpoints
ỹ. At choreography level, endpoint x realises the abstraction of the global type
sending the actual type A. When it comes to extraction and projection, we would
have to add the following transformation:

x[A];P | (yi(X);Qi)i | S̃ ⇋ x[A]→ ỹ(X);
(

P | Q̃ | S̃
)

where x[A];P and yi(X);Qi are action fragment terms (as those of GCP).
Other Extensions. By importing the functional stratification from [21], we
could obtain a monadic integration of choreographies with functions. The cal-
culus of classical higher-order processes [18] could be of inspiration for adding
code mobility to MCC, by adding higher-order types. Types for manifest shar-
ing in [2] may lead us to global specifications of sharing in choreographies. And
the asynchronous interpretation of cut reductions in [12] might give us an asyn-
chronous implementation of choreographies in MCC. We leave an exploration
of these extensions to future work. Hopefully, the shared foundations of linear
logic will make it possible to build on these pre-existing technical developments
following the same idea of choreographies as cut reductions.
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