Skip to main content

Complex Systems Theory and Crashes of Cryptocurrency Market

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2018)

Abstract

This article demonstrates the possibility of constructing indicators of critical and crash phenomena in the volatile market of cryptocurrency. For this purpose, the methods of the theory of complex systems have been used. The possibility of constructing dynamic measures of complexity as recurrent, entropy, network, quantum behaving in a proper way during actual pre-crash periods has been shown. This fact is used to build predictors of crashes and critical events phenomena on the examples of all the patterns recorded in the time series of the key cryptocurrency Bitcoin, the effectiveness of the proposed indicators-precursors of these falls has been identified. From positions, attained by modern theoretical physics the concept of economic Planck’s constant has been proposed. The theory on the economic dynamic time series related to the cryptocurrencies market has been approved. Then, combining the empirical cross-correlation matrix with the random matrix theory, we mainly examine the statistical properties of cross-correlation coefficient, the evolution of the distribution of eigenvalues and corresponding eigenvectors of the global cryptocurrency market using the daily returns of 24 cryptocurrencies price time series all over the world from 2013 to 2018. The result has indicated that the largest eigenvalue reflects a collective effect of the whole market, and is very sensitive to the crash phenomena. It has been shown that both the introduced economic mass and the largest eigenvalue of the matrix of correlations can act like quantum indicator-predictors of falls in the market of cryptocurrencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halvin, S., Cohen, R.: Complex Networks: Structure, Robustness and Function. Cambridge University Press, New York (2010)

    Google Scholar 

  2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  3. Newman, M., Watts, D., Barabási, A.-L.: The Structure and Dynamics of Networks. Princeton University Press, Princeton and Oxford (2006)

    MATH  Google Scholar 

  4. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  5. Nikolis, G., Prigogine, I.: Exploring Complexity: An Introduction. W. H. Freeman and Company, New York (1989)

    Google Scholar 

  6. Andrews, B., Calder, M., Davis, R.: Maximumlikelihood estimation for α-stable autoregressive processes. Ann. Stat. 37, 1946–1982 (2009)

    Article  Google Scholar 

  7. Dassios, A., Li, L.: An economic bubble model and its first passage time. arXiv:1803.08160v1 [q-fin.MF]. Accessed 15 Sept 2018

  8. Tarnopolski, M.: Modeling the price of Bitcoin with geometric fractional Brownian motion: a Monte Carlo approach. arXiv:1707.03746v3 [q-fin.CP]. Accessed 15 Sept 2018

  9. Kodama, O., Pichl, L., Kaizoji, T.: Regime change and trend prediction for Bitcoin time series data. In: CBU International Conference on Innovations in Science and Education, Prague, pp. 384–388 (2017). www.cbuni.cz, www.journals.cz, https://doi.org/10.12955/cbup.v5.954

    Article  Google Scholar 

  10. Shah, D., Zhang, K.: Bayesian: regression and Bitcoin. arXiv:1410.1231v1 [cs.AI]. Accessed 15 Oct 2018

  11. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM, San Francisco (2016)

    Google Scholar 

  12. Alessandretti, L., ElBahrawy, A., Aiello, L.M., Baronchelli, A.: Machine learning the cryptocurrency market. arXiv:1805.08550v1 [physics.soc-ph]. Accessed 15 Sept 2018

  13. Guo, T., Antulov-Fantulin, N.: An experimental study of Bitcoin fluctuation using machine learning methods. arXiv:1802.04065v2 [stat.ML]. Accessed 15 Sept 2018

  14. Albuquerque, P., de Sá, J., Padula, A., Montenegro, M.: The best of two worlds: forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression. Expert Syst. Appl. 97, 177–192 (2018). https://doi.org/10.1016/j.eswa.2017.12.004

    Article  Google Scholar 

  15. Wang, M., et al.: A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms. Appl. Energy 220, 480–495 (2018). https://doi.org/10.1016/j.apenergy.2018.03.148

    Article  Google Scholar 

  16. Kennis, M.: A Multi-channel online discourse as an indicator for Bitcoin price and volume. arXiv:1811.03146v1 [q-fin.ST]. Accessed 6 Nov 2018

  17. Donier, J., Bouchaud, J.P.: Why do markets crash? Bitcoin data offers unprecedented insights. PLoS One 10(10), 1–11 (2015). https://doi.org/10.1371/journal.pone.0139356

    Article  Google Scholar 

  18. Bariviera, F.A., Zunino, L., Rosso, A.O.: An analysis of high-frequency cryptocurrencies price dynamics using permutation-information-theory quantifiers. Chaos 28(7), 07551 (2018). https://doi.org/10.1063/1.5027153

    Article  MathSciNet  Google Scholar 

  19. Senroy, A.: The inefficiency of Bitcoin revisited: a high-frequency analysis with alternative currencies. Financ. Res. Lett. (2018). https://doi.org/10.1016/j.frl.2018.04.002

  20. Marwan, N., Schinkel, S., Kurths, J.: Recurrence plots 25 years later - gaining confidence in dynamical transitions. Europhys. Lett. 101(2), 20007 (2013). https://doi.org/10.1209/0295-5075/101/20007

    Article  Google Scholar 

  21. Santos, T., Walk, S., Helic, D.: Nonlinear characterization of activity dynamics in online collaboration websites. In: Proceedings of the 26th International Conference on World Wide Web Companion, WWW 2017 Companion, Australia, pp. 1567–1572 (2017). https://doi.org/10.1145/3041021.3051117

  22. Di Francesco Maesa, D., Marino, A., Ricci, L.: Data-driven analysis of Bitcoin properties: exploiting the users graph. Int. J. Data Sci. Anal. 6(1), 63–80 (2018). https://doi.org/10.1007/s41060-017-0074-x

    Article  Google Scholar 

  23. Bovet, A., Campajola, C., Lazo, J.F., et al.: Network-based indicators of Bitcoin bubbles. arXiv:1805.04460v1 [physics.soc-ph]. Accessed 11 Sept 2018

  24. Kondor, D., Csabai, I., Szüle, J., Pόsfai, M., Vattay, G.: Infferring the interplay of network structure and market effects in Bitcoin. New J. Phys. 16, 125003 (2014). https://doi.org/10.1088/1367-2630/16/12/125003

    Article  Google Scholar 

  25. Wheatley, S., Sornette, D., Huber, T., et al.: Are Bitcoin bubbles predictable? Combining a generalized Metcalfe’s law and the LPPLS model. arXiv:1803.05663v1 [econ.EM]. Accessed 15 Sept 2018

  26. Gerlach, J-C., Demos, G., Sornette, D.: Dissection of Bitcoin’s multiscale bubble history from January 2012 to February 2018. arXiv:1804.06261v2 [econ.EM]. Accessed 15 Sept 2018

  27. Soloviev, V., Belinskiy, A.: Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. arXiv:1807.05837v1 [q-fin.ST]. Accessed 30 Sept 2018

  28. Casey, M.B.: Speculative Bitcoin adoption/price theory. https://medium.com/@mcasey0827/speculative-bitcoin-adoption-price-theory-2eed48ecf7da. Accessed 25 Sept 2018

  29. McComb, K.: Bitcoin crash: analysis of 8 historical crashes and what’s next. https://blog.purse.io/bitcoin-crash-e112ee42c0b5. Accessed 25 Sept 2018

  30. Amadeo, K.: Stock market corrections versus crashes and how to protect yourself: how you can tell if it’s a correction or a crash. https://www.thebalance.com/stock-market-correction-3305863. Accessed 25 Sep 2018

  31. Webber, C.L., Marwan, N. (eds.): Recurrence Plots and Their Quantifications: Expanding Horizons. Proceedings of the 6th International Symposium on Recurrence Plots, Grenoble, France, 17–19 June 2015, vol. 180, pp. 1–387. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-29922-8

    Book  Google Scholar 

  32. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E 66(2), 026702 (2002)

    Article  Google Scholar 

  33. Zbilut, J.P., Webber Jr., C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3–4), 199–203 (1992)

    Article  Google Scholar 

  34. Webber Jr., C.L., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)

    Article  Google Scholar 

  35. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 2–4 (2002)

    Article  Google Scholar 

  36. Donner, R.V., Small, M., Donges, J.F., Marwan, N., et al.: Recurrence-based time series analysis by means of complex network methods. arXiv:1010.6032v1 [nlin.CD]. Accessed 25 Oct 2018

  37. Lacasa, L., Luque, B., Ballesteros, F., et al.: From time series to complex networks: the visibility graph. PNAS 105(13), 4972–4975 (2008)

    Article  MathSciNet  Google Scholar 

  38. Burnie, A.: Exploring the interconnectedness of cryptocurrencies using correlation networks. In: The Cryptocurrency Research Conference, pp. 1–29. Anglia Ruskin University, Cambridge (2018)

    Google Scholar 

  39. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  40. Maslov, V.P.: Econophysics and quantum statistics. Math. Notes 72, 811–818 (2002)

    Article  MathSciNet  Google Scholar 

  41. Hidalgo, E.G.: Quantum Econophysics. arXiv:physics/0609245v1 [physics.soc-ph]. Accessed 15 Sept 2018

  42. Saptsin, V., Soloviev, V.: Relativistic quantum econophysics - new paradigms in complex systems modelling. arXiv:0907.1142v1 [physics.soc-ph]. Accessed 25 Sept 2018

  43. Colangelo, G., Clurana, F.M., Blanchet, L.C., Sewell, R.J., Mitchell, M.W.: Simultaneous tracking of spin angle and amplitude beyond classical limits. Nature 543, 525–528 (2017)

    Article  Google Scholar 

  44. Rodriguez, E.B., Aguilar, L.M.A.: Disturbance-disturbance uncertainty relation: the statistical distinguishability of quantum states determines disturbance. Sci. Rep. 8, 1–10 (2018)

    Article  Google Scholar 

  45. Rozema, L.A., Darabi, A., Mahler, D.H., Hayat, A., Soudagar, Y., Steinberg, A.M.: Violation of Heisenberg’s measurement-disturbance relationship by weak measurements. Phys. Rev. Lett. 109, 100404 (2012)

    Article  Google Scholar 

  46. Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.J.: Experimental investigation of the uncertainty principle in the presence of quantum memory. Nat. Phys. 7(29), 757–761 (2011)

    Article  Google Scholar 

  47. Berta, M., Christandl, M., Colbeck, R., Renes, J., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6(9), 659–662 (2010)

    Article  Google Scholar 

  48. Landau, L.D., Lifshitis, E.M.: The Classical Theory of Fields. Course of Theoretical Physics. Butterworth-Heinemann, Oxford (1975)

    Google Scholar 

  49. Soloviev, V., Saptsin, V.: Heisenberg uncertainty principle and economic analogues of basic physical quantities. arXiv:1111.5289v1 [physics.gen-ph]. Accessed 15 Sept 2018

  50. Soloviev, V.N., Romanenko, Y.V.: Economic analog of Heisenberg uncertainly principle and financial crisis. In: 20-th International Conference SAIT 2017, pp. 32–33. ESC “IASA” NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine (2017)

    Google Scholar 

  51. Soloviev, V.N., Romanenko, Y.V.: Economic analog of Heisenberg uncertainly principle and financial crisis. In: 20-th International Conference SAIT 2018, pp. 33–34. ESC “IASA” NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine (2018)

    Google Scholar 

  52. Wigner, E.P.: On a class of analytic functions from the quantum theory of collisions. Ann. Math. 53, 36–47 (1951)

    Article  MathSciNet  Google Scholar 

  53. Dyson, F.J.: Statistical theory of the energy levels of complex systems. J. Math. Phys. 3, 140–156 (1962)

    Article  MathSciNet  Google Scholar 

  54. Mehta, L.M.: Random Matrices. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  55. Laloux, L., Cizeau, P., Bouchaud, J.-P., Potters, M.: Noise dressing of financial correlation matrices. Phys. Rev. Lett. 83, 1467–1470 (1999)

    Article  Google Scholar 

  56. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T., Stanley, H.E.: Random matrix approach to cross correlations in financial data. Phys. Rev. E 65, 066126 (2002)

    Article  Google Scholar 

  57. Shen, J., Zheng, B.: Cross-correlation in financial dynamics. EPL (Europhys. Lett.) 86, 48005 (2009)

    Article  Google Scholar 

  58. Jiang, S., Guo, J., Yang, C., Tian, L.: Random matrix analysis of cross-correlation in energy market of Shanxi, random matrix analysis of cross-correlation in energy market of Shanxi, China. Int. J. Nonlinear Sci. 23(2), 96–101 (2017)

    MathSciNet  Google Scholar 

  59. Urama, T.C., Ezepue, P.O., Nnanwa, C.P.: Analysis of cross-correlations in emerging markets using random matrix theory. J. Math. Financ. 7, 291–307 (2017)

    Article  Google Scholar 

  60. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Belinskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soloviev, V.N., Belinskiy, A. (2019). Complex Systems Theory and Crashes of Cryptocurrency Market. In: Ermolayev, V., Suárez-Figueroa, M., Yakovyna, V., Mayr, H., Nikitchenko, M., Spivakovsky, A. (eds) Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2018. Communications in Computer and Information Science, vol 1007. Springer, Cham. https://doi.org/10.1007/978-3-030-13929-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13929-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13928-5

  • Online ISBN: 978-3-030-13929-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics